CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

Curriculum and Syllabi

Integrated BSc-MSc (Mathematics)

(w.e.f. 2022-23)

DEPARTMENT OF MATHEMATICS SCHOOL OF BASIC SCIENCES

Approved by :	BOS	School Board	Academic Council
Approval Status :	\checkmark	\checkmark	\checkmark
Approval Date :	10/05/2022	14/05/2022	
Approval Date :	06/09/2022	12/09/2022	07/10/2022

Sr.	Contents	Page
No.		<u>No.</u>
	Vision and Mission	3
1	Background	_
	i) Preamble	4
	ii) Introduction	5
	iii) Learning Outcomes Based Approach to Curriculum Planning	6
	iv) Nature and Extent of Integrated BSc-MSc (Mathematics) Program	7
2	Aims of Integrated BSc-MSc (Mathematics) Program	7
3	Key outcomes underpinning curriculum planning and development	8
4	Integrated BSc-MSc Attributes	8
5	Qualification Descriptors for Integrated BSc-MSc (Mathematics) (Possible Career Pathways)	10
6	Program Learning Outcomes of Integrated BSc-MSc (Mathematics) Program	11
7	Structure of Integrated BSc-MSc (Mathematics) Program	12
8	Course Types	15
9	Semester-wise Courses and Credit Distribution	19
10	Generic Elective Courses (for other departments)	103
11	Teaching-Learning Process	128
12	Implementation of Blended Learning	128
13	Assessment and Evaluation	129
14	Keywords	130
15	References	130
16	Appendix: (i) List of MOOC Courses in Integrated BSc-MSc, and	131
	MSc Mathematics programs	122
	(ii) Structure of Question Papers and Marks Distribution	132

Table of Contents

VISION AND MISSION

Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavors and scholarly inquiry

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

Vision and Mission of the Department

Vision

To be an internationally recognized centre for research and teaching in Mathematics. To encourage excellence, innovation, integrity and values for society in the department. To produce global leaders for academic and industry by imparting multidisciplinary and contemporary mathematical knowledge to the students.

Mission

- To contribute towards building calibre of the students by providing quality education and research in Mathematics through updated curriculum, effective teaching learning process.
- To impart innovative skills, team-work, and ethical practices to the students so as to meet societal expectations.
- To build a strong base in Mathematics for various academic programs across the institute.

1. Background

i) Preamble

The LOCF (Learning Outcomes based Curriculum Framework) committee constituted by University Grants Commission (UGC) submitted its report concerning the syllabi for Integrated BSc-MSc (Mathematics). The committee discussed the framework of syllabi in its meetings and suggested implementation of these syllabi in the Departments/Schools of Mathematics in Universities/Colleges/Institutes based on following facts:

1. The learning outcomes of each course/paper are designed so that these may help learners to understand the main objectives of studying the course.

2. This will enable learners to select elective courses/papers depending on the individual inclinations and contemporary requirements.

3. The objectives of LOCF are to mentally prepare the students to learn Mathematics leading to graduate degree with honours in Mathematics or with Mathematics as a subject.

4. These syllabi in Mathematics under CBCS are recommended keeping in view applications of Mathematics in science, engineering, social science, business and a host of other areas.

5. The study of the syllabi will enable the students to be equipped with the state of the art of the subject and will empower them to get jobs in technological and engineering fields as well as in business, education and healthcare sectors.

6. The LOCF committee in Mathematics has prepared this draft paying suitable attention to objectives and learning outcomes of the courses/papers. These syllabi may be implemented with minor modifications with appropriate justifications keeping in view regional, national and international context and needs.

7. The outcomes of each course/paper may be modified as per the local requirements.

8. The text books mentioned in references are denotative/demonstrative. The divisions of each paper in units are specified to the context mentioned in courses. These units will help learners to complete the study of concerned paper in certain periods and prepare them for examinations.

9. The papers are organized considering the credit load in a particular semester. The core courses/papers of general interest are suggested for semesters I to IV. The elective courses and advanced courses are proposed for the Integrated BSc-MSc (Mathematics) students of semesters V and VI.

10. Mathematics is a vast subject with immense diversity. Hence, it is very difficult for every student to learn each branch of Mathematics, even though each paper has its unique importance. Under these circumstances, LOCF in Mathematics suggests a number of elective papers along with compulsory papers. A student can select elective papers as per her/his needs and interests.

11. The committee expects that the papers may be taught using various Computer Algebra Systems (CAS) softwares such as Mathematica, MATLAB, Maxima and R to strengthen the conceptual understanding and to widen up the horizon of students' self-experience.

12. The committee of the LOCF in Mathematics expects that the concerned departments/colleges/institutes/universities will encourage their faculty members to include necessary topics in addition to courses suggested by LOCF committee. It is hoped that the needs of all round development in the careers of learners/students will be fulfilled by the recommendations of LOCF in Mathematics.

ii) Introduction:

One of the significant reforms in the undergraduate education is to introduce the Learning Outcomes-based Curriculum Framework (LOCF) which makes it student-centric, interactive and outcome-oriented with well-defined aims, objectives and goals to achieve. Outcome based learning is the principal end of pedagogical transactions in higher education in today's world in the light of exponential changes brought about in science and technology, especially in Mathematics, and the prevalent utilitarian world view of the society. The learning outcomes are attained by students through skills acquired during a Program of study. Program learning outcomes will include subject-specific skills and generic skills, including transferable global skills and competencies. It would also focus on knowledge and skills that prepare students for further study, employment, and citizenship. They help ensure comparability of learning levels and academic standards across colleges/universities and provide a broad picture of the level of competence of graduates.

The quality education in a subject like Mathematics is a very challenging task for Higher Education System in India. UGC has already taken an appropriate measure to define the minimum levels of learning for Mathematics courses for undergraduate and post-graduate levels. The quality of higher education in Mathematics should be improved in such a manner that young minds are able to compete in this field globally in terms of their knowledge and skills in the globalized era of the date. Also, there is an urgent need of sustained initiatives to be taken by colleges/institutes/universities for outcome-oriented higher education in Mathematics so that graduates are enabled to enhance the chances of employability. Presently, the goal of higher education in Mathematics may be achieved using the following measures:

- i. Curriculum reform based on learning outcomes-based curriculum framework (LOCF).
- ii. Improving learning environment and academic resources.
- iii. Elevating the quality of teaching and research.
- iv. Involving students in discussions, problem-solving and out of box thinking about various ideas of Mathematics and their applicability, which may lead to empowerment and enhancement of the social welfare at large.
- v. Encouraging the learners to make use of LOCF to learn Mathematics through distance education.
- vi. Motivating the learners to understand various concepts of Mathematics keeping in view the regional context.
- vii. Enabling learners to create research atmosphere in mathematical sciences in their colleges/institutes/universities.
- viii. Teach courses of Mathematics based on Choice Based Credit System (CBCS).

One of the benchmarks to measure progress of a country is the advancement of knowledge of Mathematics. Hence, innovative measures should be taken to improve the quality of mathematical knowledge in our society. This is also because Mathematics has wide ranging applications in engineering, technology and a host of other areas.

iii) Learning Outcomes Based Approach to Curriculum Planning:

The Integrated BSc-MSc (Mathematics) degree is awarded to the students on the basis of knowledge, understanding, skills, attitudes, values and academic achievements sought to be acquired by learners at the end of these Programs. Hence, the learning outcomes of Mathematics for these courses are aimed at facilitating the learners to acquire these attributes, keeping in view of their preferences and aspirations for knowledge of Mathematics.

The LOCF in Mathematics has helped in designing courses in the light of graduate attributes, description of qualifications, courses and Program learning outcomes. The committee has tried to frame the syllabi of Mathematics courses in such a way that it may lead to all round development and delivery of complete curriculum. Hence, it provides specific guidelines to the learners to acquire sufficient knowledge during this Program.

The objective of LOCF (Mathematics) is to prepare the syllabi having standard level of study. It is also aimed at prescribing standard norms for teaching-learning process and examination pattern. Hence, the Program has been chalked out in such manner that there is scope of flexibility and innovation in

- i. modifications of prescribed syllabi.
- ii. teaching-learning methodology.
- iii. assessment technique of students and knowledge levels.
- iv. learning outcomes of courses.
- v. inclusion of new elective courses subject to availability of experts in colleges/institutes/universities across the country.

iv) Nature and Extent of Integrated BSc-MSc (Mathematics) Program:

Mathematics is the study of quantity, structure, space and change. It has very broad scope in science, engineering and social sciences. The key areas of study in Mathematics are:

- 1. Calculus
- 2. Algebra
- 3. Geometry
- 4. Differential Equations
- 5. Analysis
- 6. Mechanics

Degree programs in Mathematics cover topics which are already mentioned in details under various headings in Section 6. The depth and breadth of study of individual topics depend on the nature and devotion of learners in specific Mathematics Programs.

As a part of effort to enhance employability of Mathematics graduates, the courses have been designed to include learning experiences, which offer them opportunities in various sectors of human activities. In this context, the experience of the project work in the areas of applications of Mathematics has a key role.

2. Aims of Integrated BSc-MSc (Mathematics) Program:

The overall aims of Integrated BSc-MSc (Mathematics) Program are as follows:

- To create deep interest in learning Mathematics.
- To develop broad and balanced knowledge and understanding of definitions, concepts, principles and theorems.
- To familiarize the students with suitable tools of mathematical analysis to handle issues and problems in mathematics and related sciences.

- To enhance the ability of learners to apply the knowledge and skills acquired by them during the Program to solve specific theoretical and applied problems in mathematics.
- To provide students/learners sufficient knowledge and skills enabling them to undertake further studies in mathematics and its allied areas on multiple disciplines concerned with mathematics.
- To encourage the students to develop a range of generic skills helpful in employment, internships and social activities.

3. Key Outcomes Underpinning Curriculum Planning and Development

The LOCF in Mathematics desires to propose the courses of Mathematics for Integrated BSc-MSc (Mathematics), based on the expected learning outcomes and academic standards which are necessary for the graduates after completing these Programs. The committee considered and discussed the following factors seriously:

- i. Framing of syllabi
- ii. Learners attributes
- iii. Qualification descriptors
- iv. Program learning outcomes
- v. Course learning outcomes
- vi. Necessity of having elective courses
- vii. Applications of Mathematics
- viii. Employability in banking, finance and other sectors.

4. Integrated BSc-MSc Attributes

The graduate attributes in mathematics are the summation of the expected course learning outcomes mentioned in the beginning of each course. Some of them are stated below.

4.1 Disciplinary knowledge:

Capability of demonstrating comprehensive knowledge of Mathematics and understanding of one or more disciplines which form a part of an undergraduate program of study.

4.2 Communications skills:

4.2.1 Ability to communicate various concepts of Mathematics effectively using examples and their geometrical visualizations.

- 4.2.2 Ability to use Mathematics as a precise language of communication in other branches of human knowledge.
- 4.2.3 Ability to communicate long standing unsolved problems in Mathematics.
- 4.2.4 Ability to show the importance of Mathematics as a precursor to various scientific developments since the beginning of the civilization.
- 4.2.5 Ability to explain the development of Mathematics in the civilizational context and its role as queen of all sciences.

4.3 Critical thinking and analytical reasoning:

- 4.3.1 Ability to employ critical thinking in understanding the concepts in every area of Mathematics.
- 4.3.2 Ability to analyze the results and apply them in various problems appearing in different branches of Mathematics.

4.4 Problem solving:

- 4.4.1 Capability to solve problems in computer graphics using concepts of linear algebra.
- 4.4.2 Capability to solve various models such as growth and decay models, radioactive decay model, drug assimilation, LCR circuits and population models using techniques of differential equations.
- 4.4.3 Ability to solve linear system of equations, linear programming problems and network flow problems.
- 4.4.4 Ability to provide new solutions using the domain knowledge of Mathematics acquired during this Program.

4.5 Research-related skills:

- 4.5.1 Capability for inquiring about appropriate questions relating to the concepts in various fields of Mathematics.
- 4.5.2 To know about the advances in various branches of Mathematics.

4.6 Information/digital literacy:

4.6.1 Capability to use appropriate softwares to solve system of equations and differential equations.

4.6.2 Capability to understand and apply the programming concepts of C++ to mathematical investigations and problem solving.

4.7 Self-directed learning:

Ability to work independently and do in-depth study of various notions of Mathematics.

4.8 Moral and ethical awareness/reasoning:

Ability to identify unethical behaviour such as fabrication, falsification or misrepresentation of data and adopting objective, unbiased and truthful actions in all aspects.

4.9 Lifelong learning:

Ability to think, acquire knowledge and skills through logical reasoning and to inculcate habit of self-learning.

5. Qualification descriptors for Integrated BSc-MSc (Mathematics) Program

The qualification descriptors suggest generic outcomes and attributes to be obtained while obtaining the degree of Integrated BSc-MSc (Mathematics) Program. The qualification descriptors indicate the academic standards on the basis of following factors:

- i. Level of knowledge
- ii. Understanding
- iii. Skills
- iv. Competencies and attitudes
- v. Values.

These parameters are expected to be attained and demonstrated by the learners after becoming graduates in these Programs. The colleges/institutes/universities should consider the above mentioned parameters at the time of designing, approving, assessing and reviewing academic Programs containing common courses for Integrated BSc-MSc (Mathematics) Program. The learning experiences and assessment procedures should be so designed that every graduate with Mathematics may achieve the Program learning outcomes with equal opportunity irrespective of the class, gender, community and regions. Each graduate in Mathematics should be able to:

- i. demonstrate fundamental systematic knowledge of Mathematics and its applications in engineering, science, technology and mathematical sciences. It should also enhance the subject specific knowledge and help in creating jobs in various sectors.
- ii. demonstrate educational skills in areas of analysis, geometry, algebra, mechanics, differential equations etc.
- iii. apply knowledge, understanding and skills to identify the difficult/unsolved problems in Mathematics and to collect the required information in possible range of sources and try to analyse and evaluate these problems using appropriate methodologies.
- iv. fulfill one's learning requirements in Mathematics, drawing from a range of contemporary research works and their applications in diverse areas of mathematical sciences.
- v. apply one's disciplinary knowledge and skills in Mathematics in newer domains and uncharted areas.
- vi. identify challenging problems in Mathematics and obtain well-defined solutions.
- vii. exhibit subject-specific transferable knowledge in Mathematics relevant to job trends and employment opportunities.

6. Program Learning Outcomes of Integrated BSc-MSc (Mathematics)

Bachelor's degree in Mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of Mathematics. This also leads to study of related areas like computer science and statistics. Thus, this Program helps learners in building a solid foundation for higher studies in Mathematics.

- 1. The skills and knowledge gained has intrinsic beauty, which also leads to proficiency in analytical reasoning. This can be utilised in modelling and solving real life problems.
- 2. Students undergoing this Program learn to logically question assertions, to recognise patterns and to distinguish between essential and irrelevant aspects of problems. They also share ideas and insights while seeking and benefitting from knowledge and insight of others. This helps them to learn to behave responsibly in a rapidly changing interdependent society.

- 3. Students completing this Program will be able to present Mathematics clearly and precisely, make vague ideas precise by formulating them in the language of Mathematics, describe mathematical ideas from multiple perspectives and explain fundamental concepts of Mathematics to non-mathematicians.
- 4. Completion of this Program will also enable the learners to join teaching profession in primary and secondary schools.
- 5. This Program will also help students to enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

7. Structure of Integrated BSc-MSc (Mathematics) Program

The Integrated BSc-MSc (Mathematics) is five-year degree program divided into 10 semesters. A student is to earn the required credits as per University ordinance and UGC guidelines. The scheme and syllabi of the program are subject to change according to the UGC guidelines, NEP 2020 and University ordinance.

Duration: Integrated BSc-MSc (Mathematics) is a full-time integrated program offered by the Department of Mathematics. This is a 5-year program, consisting of 10 semesters, two per year.

Eligibility: 10+2 in Science Streams or equivalent from any recognized board in India with Mathematics as one of the subjects having minimum 50% marks or equivalent grade in aggregate for UR category and 45% or equivalent grade for SC/ST/OBC/PWD/EWS candidates.

7.1 Course learning outcomes

Course learning outcomes of each course in Integrated BSc-MSc (Mathematics) Program have been enshrined in the beginning of course contents of each course.

				B	.Sc. (Hon	ns) Ma	then	natio	es				
					~ ~ ~									
	CORE COURSES (14)													
Program outcomes	Calculu s	and	ia ble Calculus	Ordinary Different ial Equation s	Analysi s	Theor	Probabili ty and Statistics	n ics	Algebr a	Differenti al Equation	and Metric Spaces		Analysis	Numeric al Analysis
Dissisting					-/									
Disciplinary knowledge	Ň	V	V	V	V	V	V	V	V	V	V	V	N	V
Communica tion skills	V	V	V		V	V	V		V	V	V	V	V	
Critical thinking	V	V	V	V	V	V	V	V	V	V	V	V	V	V
Analytical	V		V	V	V	V	V	V	V	V	V	\checkmark	V	V
thinking Problem solving	V	\checkmark			V	V	V	V	V	V	V	\checkmark	V	
Research related skills				V						V		V	V	
Information literacy		V	V	V	V	V	V	V	V	V	V	V	V	V
Digital literacy			V				V							V
Self- directed learning	V	V	V	V	V	V	V	V	V	V	V	V	V	V
Lifelong learning	V	\checkmark	\checkmark	\checkmark	V		V			V	V	\checkmark	V	V
Professional skills		V	V	V	V	V	V	V	V	V	V	V	V	V
Application al skills	V		V	V			V	V	V	V				V
Experiment al learning		V	V	V	V		V	V	N	V			V	V
Employabili ty options	√		\checkmark				V		V	V				\checkmark

		DIS	CIPL	INE S	SPECII	FIC E	ELEC	ΓIVE	COU	JRSES	S (Any	Four)		
Program	and Differen	matica l Logic			Theory		Theory and	Mathem a tics	e ts and	sTheory	a tical Finance	Progra m ming		ced Mecha	ation on Any
	t ial Gemetr y		and Fourier Analysis	;	and Coding		Relativi t y		Applic ations			for Mathem a tics		nics	Topic of Mathe matics
	1	1			1	I	1	1	1		1			1	
Disciplinary knowledge	V	V	N	N	N	V	V	N	V	N	N	V	V	N	N
Communica tion skills	\checkmark	V			V	V		V	V		V	V		V	
Critical thinking	\checkmark	V	V	V	V	V		V	V	V	V	V	V	V	V
Analytical thinking	\checkmark	V	\checkmark	$\overline{\mathbf{v}}$	V	V	V	V	V	V	\checkmark	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$	V	V
Problem solving	V	V	V	V	V	V	V	V	V	V	V		V	V	
Research related skills	\checkmark	V	V	V	V	V		V	V	V	V	V	V	\checkmark	
Information literacy			V	V	N				V			V			
Digital literacy			V	V	V				V			V			
Self-directed learning		V	\checkmark	V	V	V		V	V	V	V	\checkmark		V	V
Lifelong learning	V	V	\checkmark	\checkmark	V	V	\checkmark	\checkmark	V	V	\checkmark	\checkmark	\checkmark	V	V
Professional skills	\checkmark	V	V	V	V	V	V	\checkmark	V	V	\checkmark	N	V	V	
Application al skills			\checkmark	V	V	V		V	V		V	\checkmark	\checkmark		
Experiment al learning				V	V	V		V	V		V	V	V		
Employabili ty options				$\overline{\mathbf{v}}$	V			\checkmark	V		\checkmark	$\overline{\mathbf{v}}$	$\overline{\mathbf{v}}$		

Sr.	Nature of Courses/Papers	Total No. of	Credits in Theory+	Total Credits
	(up to 6 th Semester)	Courses/Papers	(Tutorial/Practical)	
1.	Core	14	06	84
2.	Discipline Specific Electives	04	06	24
3.	Generic Electives /Interdisciplinary	04	06	24
4.	Ability Enhancement	02	04	08
5.	Skill Enhancement	02	04	08
Tota	al Courses/Credits	28		148

7.1.1 Credit distribution for Integrated BSc-MSc (Mathematics) Program

8. Course Type

Core Courses (CC) Discipline Specific Elective Courses (DSEC) Generic Elective Courses (GEC) Ability Enhancement Compulsory Courses (AECC) Skill Enhancement Courses (SEC)

Total Credits: Semester-wise credits (up to 6th semester): 22+ 22+ 28 + 28+24+24

CORE COURSES (CC)

Sr.	Course code	Course title	L	Т	P	Credits
1.	SBSMAT 03 01 01 C 5106	Calculus	5	1	0	6
2.	SBSMAT 03 01 02 C 5106	Algebra and Geometry	5	1	0	6
3.	SBSMAT 03 02 01 C 5106	Multivariable Calculus	5	1	0	6
4.	SBSMAT 03 02 02 C 5106	Ordinary Differential Equations	5	1	0	6
5.	SBSMAT 03 03 01 C 5106	Real Analysis	5	1	0	6
6.	SBSMAT 03 03 02 C 5106	Group Theory	5	1	0	6
7.	SBSMAT 03 03 03 C 5106	Probability and Statistics	5	1	0	6
8.	SBSMAT 03 04 01 C 5106	Mechanics	5	1	0	6
9.	SBSMAT 03 04 02 C 5106	Linear Algebra	5	1	0	6
10.	SBSMAT 03 04 03 C 5106	Partial Differential Equations and Calculus of Variation	5	1	0	6
11.	SBSMAT 03 05 01 C 5106	Set Theory and Metric Spaces	5	1	0	6
12.	SBSMAT 03 05 02 C 5106	Advanced Algebra	5	1	0	6
13.	SBSMAT 03 06 01 C 5106	Complex Analysis	5	1	0	6
14.	SBSMAT 03 06 02 C 4046	Numerical Analysis	4	0	4	6

DISCIPLINE SPECIFIC ELECTIVE COURSES (DSEC)

Sr.	Course code	Course title	L	Т	Р	Credits
1.	SBSMAT 03 05 01 DSE 5106	Tensors and Differential Geometry	5	1	0	6
2.	SBSMAT 03 05 02 DSE 5106	Mathematical Logic	5	1	0	6
3.	SBSMAT 03 05 03 DSE 5106	Integral Transforms and Fourier Analysis	5	1	0	6
4.	SBSMAT 03 05 04 DSE 5106	Linear Programming	5	1	0	6
5.	SBSMAT 03 05 05 DSE 5106	Information and Coding Theory	5	1	0	6
6.	SBSMAT 03 05 06 DSE 5106	Graph Theory	5	1	0	6
7.	SBSMAT 03 05 07 DSE 5106	Special Theory of Relativity	5	1	0	6
8.	SBSMAT 03 06 01 DSE 5106	Discrete Mathematics	5	1	0	6
9.	SBSMAT 03 06 02 DSE 5106	Wavelets and Applications	5	1	0	6
10.	SBSMAT 03 06 03 DSE 5106	Number Theory	5	1	0	6
11.	SBSMAT 03 06 04 DSE 5106	Mathematical Finance	5	1	0	6
12.	SBSMAT 03 06 05 DSE 5106	Cryptography	5	1	0	6
13.	SBSMAT 03 06 06 DSE 5106	Advanced Mechanics	5	1	0	6
14.	SBSMAT 03 06 07 DSE 5106	Dissertation on Any Topic of Mathematics	5	1	0	6

ABILITY ENHANCEMENT COMPULSORY COURSES (AECC)*:

Sr.	Course Code	Course Title	L	Τ	Р	Credits
1.	SBSMAT 03 01 01 AECC 3104	Environmental Sciences	3	1	0	4
2.	SBSMAT 03 02 01 AECC 3104	प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1)	3	1	0	4
3.	SBSMAT 03 02 02 AECC 3104	हिंदी भाषा : रचना एवं व्यवहार	3	1	0	4
4.	SBSMAT 03 02 03 AECC 3104	English	3	1	0	4

SKILL ENHANCEMENT ELECTIVE COURSES (SEC)*:

The department may offer more than one course depending on the specialization and strength of faculty members. The students have to opt for one course from Sr. 1 and 2 in 3rd semester and one from Sr. 3 and 4 in 4th semester from the following.

Sr.	Course Code	Course Title	L	Τ	P	Credits
1.	SBSMAT 03 03 01 SEC 3104	Logic, Sets and Graph Theory	3	1	0	4
2.	SBSMAT 03 03 02 SEC 3024	Computer Fundamentals and Programming in C	3	0	2	4
3.	SBSMAT 03 04 01 SEC 3024	Object Oriented Programming in C++(P)	3	0	2	4
4.	SBSMAT 03 04 02 SEC 3104	Linux Operating System and Computer Graphics	3	1	0	4

* 1. University/Department may add more choices for Ability Enhancement Compulsory and Skill Enhancement Elective Courses.

2. The AECC course Environmental Sciences is compulsory, whereas one out of the remaining three AECC courses (प्राचीनभारतीयसंस्कृति:, दर्शनं भाषाविज्ञानं च, हिंदी भाषा: रचना एवं व्यवहार and English/MIL) will be taught in first/second semester according to availability of faculty members in respective departments.

9. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION Scheme and Syllabi of Integrated BSc-MSc (Mathematics) (CHOICE BASED CREDIT SYSTEM)

Semester I

Total credits: 22

Sr.	Course Title	Course Code	L	Т	Р	Credits
1	Calculus	SBSMAT 03 01 01 C 5106	5	1	0	6
2	Algebra and Geometry	SBSMAT 03 01 02 C 5106	5	1	0	6
3	AECC1		3	1	0	4
4	GE1		5	1	0	6

Semester II

Total credits: 22

Sr.	Course Title	Course Code	L	Т	Р	Credits
1	Multivariable Calculus	SBSMAT 03 02 01 C 5106	5	1	0	6
2	Ordinary Differential Equations	SBSMAT 03 02 02 C 5106	5	1	0	6
3	AECC2		3	1	0	4
4	GE2		5	1	0	6

Semester III

Total credits: 28

Sr.	Course Title	Course Code	L	Т	Р	Credits
1	Real Analysis	SBSMAT 03 03 01 C 5106	5	1	0	6
2	Group Theory	SBSMAT 03 03 02 C 5106	5	1	0	6
3	Probability and Statistics	SBSMAT 03 03 03 C 5106	5	1	0	6
4	SEC1		3	1/0	0/2	4
5	GE3		5	1	0	6

Semester IV

Total credits: 28

Sr.	Course Title	Course Code	L	Т	Р	Credits
1	Mechanics	SBSMAT 03 04 01 C 5106	5	1	0	6
2	Linear Algebra	SBSMAT 03 04 02 C 5106	5	1	0	6
3	Partial Differential Equations and Calculus of Variation	SBSMAT 03 04 03 C 5106	5	1	0	6
4	SEC2		3	1/0	0/2	4
5	GE4		5	1	0	6

Semester V

Total credits: 24

Sr.	Course Title	Course Code	L	T	Р	Credits
1	Set Theory and Metric Spaces	SBSMAT 03 05 01 C 5106	5	1	0	6
2	Advanced Algebra	SBSMAT 03 05 02 C 5106	5	1	0	6
3	DSE1		5	1	0	6
4	DSE2		5	1	0	6

Semester VI

Total credits: 24

Sr.	Course Title	Course Code	L	Т	Р	Credits
1	Complex Analysis	SBSMAT 03 06 01 C 5106	5	1	0	6
2	Numerical Analysis	SBSMAT 03 06 02 C 4046	4	0	4	6
3	DSE3		5	1	0	6
4	DSE4		5	1	0	6

8. COURSE-LEVEL LEARNING OUTCOMES

Course Structure

			Maximum Marks					
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Continuous Assessment	Lab	Total Marks		
SBSMAT 03 01 01 C 5106	Calculus	6	105	45	-	150		
SBSMAT 03 01 02 C 5106	Algebra and Geometry	6	105	45	-	150		
AECC1		4	70	30	-	100		
GEC1		6	105	45	-	150		
	Total marks of	Semester-I	1		•	550		

SEMESTER – I

Note : The other conditions will remain the same as per relevant Ordinance and regulations of the University.

Course	Course Name: (Course Name: CalculusCourse Code: SBSMAT 03 01 01 C 5106							
No: 1									
Batch:	Program:	Sem: I	L	Т	Р	Credits	Contact		
2022-27	Integrated						Hrs per		
	BSc-MSc						Week: 06		
	(Mathematics)		5	1	0	6	Total		
							Hours: 90		
Course	To understand the	he axioma	tic foundat	ion of the	real number	system, in	particular the		
Objective	notion of comp	leteness a	nd some of	f its conse	equences; un	derstand th	e concepts of		
	limits, continuity	y, compact	ness, differ	entiability	, and integra	bility, rigor	ously defined.		
	Students should	also have	attained a	basic leve	el of compe	tency in de	veloping their		
	own mathematic	al skills.							
C		1 .1 .	.1	. 1 .	·11.1 1.1 /				
Course	After going thr	-							
Outcomes	• Assimilate the notions of limit of a sequence and convergence of a series of real								
	numbers.								
	• Calculate th	e limit and	l examine t	he continui	ity of a funct	ion at a poir	nt.		
		the conse	quences of	various m	ean value th	eorems for	differentiable		
	functions.								
	• Sketch curv	es in Carte	sian and po	olar coordi	nate systems				
	Apply deriv	vative test	s in optim	ization pro	oblems appe	earing in so	cial sciences		
	physical scie	ences, life	sciences an	d a host of	f other discip	lines.			
		Content	of Each U	nit			Hours of		
							Each Unit		
Unit-I: Seq	uences and Integr	ration					18		
Real number	ers, Sequences of	real numl	pers, Conve	ergence of	sequences	and series,			
Bounded an	d monotonic seque	ences; Def	inite integra	al as a limi	t of sum, Int	egration of			
irrational a	lgebraic functions	and tran	scendental	functions	, Reduction	formulae,			
Definite inte	egrals.								
I init-II. I :.	nit and Continuit	V					18		
		-	unotion I:	mit at infi	nity and inf	nita limita	10		
e-0 delinitio	on of limit of a rea	a valued I	unction, L1	mit at 1nf1	muy and infi	me mmts;			

Continuity of a real valued function, Properties of continuous functions, Intermediate	
value theorem, Geometrical interpretation of continuity, Types of discontinuity;	
Uniform continuity.	
Unit-III: Differentiability	18
Differentiability of a real valued function, Geometrical interpretation of	
differentiability, Relation between differentiability and continuity, Differentiability	
and monotonicity, Chain rule of differentiation; Darboux's theorem, Rolle's theorem,	
Lagrange's mean value theorem, Cauchy's mean value theorem, Geometrical	
interpretation of mean value theorems; Successive differentiation, Leibnitz's	
theorem.	
Unit-IV: Expansion of Functions	18
Maclaurin's and Taylor's theorems for expansion of a function in an infinite series,	
Taylor's theorem in finite form with Lagrange, Cauchy and Roche-Schlomilch	
forms of remainder; Maxima and minima.	
Unit-V: Curvature, Asymptotes and Curve Tracing	18
Curvature; Asymptotes of general algebraic curves, Parallel asymptotes, Asymptotes	
parallel to axes; Symmetry, Concavity and convexity, Points of inflection, Tangents	
at origin, Multiple points, Position and nature of double points; Tracing of Cartesian,	
polar and parametric curves.	
References:	
1. George B. Thomas Jr., R L Finney. Calculus and Analytical Geometry (Pearson Education, (Textbook).	14th edition).
2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th ed India.	ition). Wiley
3. Gabriel Klambauer (1986). Aspects of Calculus. Springer-Verlag.	

4. Wieslaw Krawcewicz & Bindhyachal Rai (2003). Calculus with Maple Labs. Narosa.

Course	Course Name:									
No: 2	and Geom	netry	Course Code: SBSMAT 03 01 02 C 5106							
Batch:	Program:	Sem: I	L T P Credits Contact Hrs per							
2022-27	Integrated						Week: 06			
	BSc-MSc		5	1	0	6	Total Hours: 90			
	(Mathematics)				Ŭ	, , , , , , , , , , , , , , , , , , ,				
Course	To introduce ba	sic structur	es of alg	ebra li	ke mat	rices, system of 1	inear equation and			
Objective	linear transform	ation which	are the	main p	illars o	f modern mathem	atics. Students can			
	develop geomet	ry with a de	egree of	confide	ence an	nd will gain fluend	cy in the basics of			
	Euclidean geom	etry. The co	ourse giv	ves the	studen	t a good mathema	atical maturity and			
	enables to build	mathematica	al thinkin	g and s	kill.					
Course	After going	through th	is course	the st	idents	will be able to				
Outcomes	6 6									
Outcomes		1				-	polynomials, learn			
			-	g roots	and Fa	ummarize with rela	ations, equivalence			
		and partition				c 1				
			s theorem	n in a	numbe	er of applications	to solve numerical			
	problems					<u></u> .				
	Ū				•	•	ations by the row			
		form of the a	-							
	Find eige	envalues and	correspo	onding	eigenve	ectors for a square	matrix.			
	• Explain t	he propertie	s of three	e dimen	sional s	shapes.				
							Hours			
		Conte	ent of Ea	ch Uni	t					
Unit-I: The	ory of Equations	and Compl	ex Numł	oers			18			
Elementary	theorems on the	roots of an	equatior	ns inclu	uding C	Cardan's method, '	The			
remainder a	nd factor theorems	s, Synthetic	division,	Factor	ed form	of a polynomial, '	The			
Fundamenta	Fundamental theorem of algebra, Relations between the roots and the coefficients of									
polynomial equations, Imaginary roots, Integral and rational roots; Polar representation										
of complex	numbers, The nt	h roots of u	unity, De	Moiv	re's the	corem for integer	and			

rational indices and its applications.

Unit-II: Relations and Basic Number Theory Relations, Equivalence relations, Equivalence classes; Functions, Composition of functions, Inverse of a function; Finite, countable and uncountable sets; The division algorithm, Divisibility and the Euclidean algorithm, The fundamental theorem of arithmetic, Modular arithmetic and basic properties of congruences;	18
Principles of mathematical induction and well ordering.	
Unit-III: Row Echelon Form of Matrices and Applications Systems of linear equations, Row reduction and echelon forms, Linear independence, The rank of a matrix and applications; Introduction to linear transformations, The matrix of a linear transformation, Matrix operations, Determinants, The inverse of a matrix, Characterizations of invertible matrices; Applications to Computer Graphics; Eigenvalues and eigenvectors, The characteristic equation and the Cayley-Hamilton theorem.	18
Unit-IV: Planes, Straight Lines and Spheres Planes: Distance of a point from a plane, Angle between two planes, pair of planes, Bisectors of angles between two planes; Straight lines: Equations of straight lines, Distance of a point from a straight line, Distance between two straight lines, Distance between a straight line and a plane; Spheres: Different forms, Intersection of two spheres, Orthogonal intersection, Tangents and normal, Radical plane, Radical line, Coaxial system of spheres, Pole, Polar and Conjugacy.	18
Unit-V: Locus, Surfaces, Curves and Conicoids Space curves, Algebraic curves, Ruled surfaces, Some standard surfaces, Classification of quadric surfaces, Cone, Cylinder, Central conicoids, Tangent plane, Normal, Polar planes, and Polar lines.	18

References:

- Robert J. T. Bell (1994). An Elementary Treatise on Coordinate Geometry of Three Dimensions. Macmillan India Ltd, (Textbook).
- 2. Mark V. Lawson (2020). Algebra and Geometry. 2nd edition, CRC Press (Textbook).
- Titu Andreescu, & Dorin Andrica (2014). Complex Numbers from A to...Z. (2nd edition). Birkhäuser.
- D. Chatterjee (2009). Analytical Geometry: Two and Three Dimensions. Narosa Publishing House.
- Leonard Eugene Dickson (2009). First Course in the Theory of Equations. The Project Gutenberg EBook (http://www.gutenberg.org/ebooks/29785)
- Edgar G. Goodaire & Michael M. Parmenter (2015). Discrete Mathematics with Graph Theory (3rd edition). Pearson Education Pvt. Ltd. India.
- Bernard Kolman & David R. Hill (2003). Introductory Linear Algebra with Applications (7th edition). Pearson Education Pvt. Ltd. India.
- 8. David C. Lay, Steven R. Lay & Judi J. McDonald (2016). Linear Algebra and its Applications (5th edition). Pearson Education Pvt. Ltd. India.

Course	Course Name:Course Code: SBSMAT 03 01 01 AECC 3104									
No: 03	Environmental So	ciences								
Batch:	Program:	Sem: I	L	Т	Р	Credits	Contact Hrs			
2022-27	Integrated						per Week: 2			
	BSc-MSc		3	1	0	4	Total Hours:			
	(Mathematics)						60			
Course	To create awareness for sustainable development, problems of pollution, solid waste									
Objective	disposal, degrada	ation of env	vironme	nt, issue	s like ec	conomic productivity	and national			
	security, Global	warming, d	lepletior	n of ozo	ne layer,	loss of biodiversity	y and need of			
	worldwide efforts	s in its conse	rvation.							
		.1 1.1.		.1 .	1 4 11	11 11 /				
	After going	-								
		-				gical diversity and				
	-		fter be	able to	create av	vareness for its cor	servation and			
	developm					_				
		U		U		natural resources v	vill be helpful			
				-	-	ory approach.				
	• Know ab	out the loca	l enviro	onmental	l issues,	movements and an	important role			
	to minimi	ze the impa	ict of th	ese aspe	cts.					
	• Knowled	ge about the	e types o	of pollu	tion and j	pollution control.				
		Con	tent of	Each Ur	nit		Hours			
Unit-I: Sco	pe of the Environ	mental Scie	ence an	d Natura	l resour	ces	12			
Definition,	scope and impor	rtance of th	ne envi	ronmenta	al science	e, Natural Resource	es:			
Renewable	and non-renewable	e resources:	Natural	resource	s and ass	ociated problems.				
Unit-II: In	troduction and st	ructure of	Ecosyst	em			12			
Introduction	n, kinds of ecosys	tem, structu	re and f	functions	, abiotic	and biotic component	nt,			
Ecological	energetics, Energ	y flow mo	dels, Fo	ood chai	n and Fo	ood web, Ecologic	al			
Pyramids-ty	ypes, Ecological su	accession, I	ntroduc	tion, type	es, structi	are and function of t	he			
following e	cosystem :- a. Fore	est ecosyster	n b. Gra	ssland e	cosystem	c. Desert ecosystem	d.			
Aquatic eco	osystems.									

Unit-III: Bio- Geographical Classification	12							
Introduction - Definition, value and types: genetic, species and ecosystem diversity. Bio-								
geographical classification and Hot-spots of India. Threats to biodiversity: habitat loss,								
poaching of wildlife, man-wildlife conflicts. Endangered and endemic species of India.								
Conservation of biodiversity: In-situ and Ex-situ conservation.								
Unit-IV: Control Measures of Pollution	12							
Definition, cause, effects and control measures of Air, Water, Soil, Marine and Noise								
pollution. Solid Waste Management: Causes, effects and control measures of wastes.								
Unit-V: Public Awareness	12							
Seventeen Sustainable Developmental Goals, Environment Protection Act, Air Act, Water Act, Wildlife Protection Act, Forest Conservation Act, Public awareness.								
References:								
1. Bharucha E, (2002) The Biodiversity of India, Map in Publishing								
2. Cao G, Orru R (2014) Current Environmental Issues and Challenges. 2014th edition;	Springer							
 Cunningham W P, Cunningham M A (2008) Principles of Environment Science. Enq Applications. 5th Edition. Tata McGraw Hill, New Delhi 	uiry and							
4. Dash M C, Dash S P (2009) Fundamentals of Ecology. 3 rd McGraw Hill Education								
 Gibbs J, Malcolm L, Sterling J (2008) Problem-Solving in Conservation Biology and Management. 2nd ed. Wiley-Blackwell 	Wildlife							
 Ginley D, Cahen, D (2011) Fundamentals of Materials for Energy and Environmenta Sustainability. Cambridge University Press 	1							
 Gilbert M (2007) An Introduction to Environmental Engineering and Science, Prentic New Delhi 	e Hall,							
 Khan I (2019) Forest Governance and Sustainable Resource Management. SAGE Pu India. 	blications.							
9. Odum E P, Barrett W, (2005) Fundamentals of Ecology. 5 th ed. Cengage Learning.								
10. Sharma P D (2017) Ecology and Environment. 13 th ed. Rastogi Publications.								
11. Thangadurai D, Ching G, Jeyabalan S, Islam S (2019) Biodiversity and Con Characterization and Utilization of Plants, Microbes and Natural Resources for S Development and Ecosystem Management. United States: Apple Academic Press								
20								

Course	Course Name: *******			Course Code: ****** GE 5106			
No: 04	GE1						
Batch:	Program:	Sem: I	L	Т	Р	Credits	Contact Hrs
2022-27	Integrated BSc-MSc						per Week: 6
	(Mathematics)		5	1	0	6	Total
							Hours: 90

SEMESTER – II

				rks		
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks
SBSMAT 03 02 01 C 5106	Multivariable Calculus	6	105	45	-	150
SBSMAT 03 02 02 C 5106	Ordinary Differential Equations	6	105	45	-	150
AECC2		4	70	30	-	100
GEC2		6	105	45	-	150
	Total marks o	f Semester-I	Ι		•	550

Course	Course Name:Multivariable CalculusCourse Code:SBSMAT 03 02 01 C 5106						5106			
No: 05										
Batch:	Program:	Sem: II	L	Т	Р	Credits	Contac	t Hrs per		
2022-27	Integrated BSc-MSc						Week:	06		
	(Mathematics)		5	1	0	6	Total 1	Hours: 90		
Course	To understand the extensio	n of the studies	of single	e varia	ble dif	ferential a	nd integral calculus			
Objective	to functions of two or more independent variables. Also, the emphasis will be on the use of									
	Computer Algebra Systems by which these concepts may be analyzed and visualized to have a									
	better understanding.									
Course	After going through this course the students will be able to									
Outcomes	-	• Learn conceptual variations while advancing from one variable to several variables								
in calculus.										
	Apply multivariabl	e calculus in op	calculus in optimization problems.							
	 Inter-relationship amongst the line integral, double and triple integral form Applications of multivariable calculus tools in physics, economics, optical 						nulations.			
							imization,			
and understanding the architecture of curves and surfaces in plane and sp							e and spa	ace etc.		
	Realize importance	e of Green's, G	auss's ar	nd Sto	kes' th	eorems in	n other bi	ranches of		
	mathematics.									
		Content of Eacl	n Unit					Hours		
Unit-I: Part	ial Differentiation							18		
Functions o	f several variables, Level	curves and sur	faces, L	imits	and c	ontinuity,	Partial			
differentiatio	on, Tangent planes, Chain rul	le, Directional d	lerivative	es, The	gradi	ent, Maxir	nal and			
normal prop	erties of the gradient, Tangent	planes and norr	nal lines							
Unit-II: Dif	ferentiation							18		
Higher orde	r partial derivatives, Total d	ifferential and	different	iability	, Jaco	bians, Ch	ange of			
variables, Euler's theorem for homogeneous functions, Taylor's theorem for functions of two										
variables and	d more variables, Envelopes a	nd evolutes.								

Unit-III: Extrema of Functions and Vector Field	18				
Extrema of functions of two and more variables, Method of Lagrange multipliers, Constrained					
optimization problems, Definition of vector field, Divergence, curl, gradient and vector identities.					
Unit-IV: Double and Triple Integrals	18				
Double integration over rectangular and nonrectangular regions, Double integrals in polar co-					
ordinates, Triple integral over a parallelepiped and solid regions, Volume by triple integrals,					
Triple integration in cylindrical and spherical coordinates, Change of variables in double and					
triple integrals, Dirichlet integral.					
Unit-V: Green's, Stokes' and Gauss Divergence Theorem	18				
Chief V. Oreen S, Stokes and Gauss Divergence Theorem					
Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem.					
Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface					
Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem.					
 Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem. References: 1. George B. Thomas Jr., R L Finney. Calculus and Analytical Geometry (14th edition). 	Pearson				
 Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem. References: 1. George B. Thomas Jr., R L Finney. Calculus and Analytical Geometry (14th edition). Education, (Textbook). 	Pearson				
 Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem. References: George B. Thomas Jr., R L Finney. Calculus and Analytical Geometry (14th edition). Education, (Textbook). James Stewart (2012). Multivariable Calculus (7th edition). Brooks/Cole. Cengage, (Textbook). 	Pearson				
 Line integrals, Applications of line integrals: Mass and Work, Fundamental theorem for line integrals, Conservative vector fields, Green's theorem, Area as a line integral, Surface integrals, Stokes' theorem, The Gauss divergence theorem. References: George B. Thomas Jr., R L Finney. Calculus and Analytical Geometry (14th edition). Education, (Textbook). James Stewart (2012). Multivariable Calculus (7th edition). Brooks/Cole. Cengage, (T 3. Jerrold Marsden, Anthony J. Tromba & Alan Weinstein (2009). Basic Multivariable 	Pearson ' extbook). e Calculus,				

Course No: 06	Course Name:			Course Code: SBSMAT 03 02 02 C 5106				
	Ordinary Differential Equations							
Batch:	Program:	Sem: II	L	Т	P	Credits	Contact	t Hrs per
2022-27	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total H	lours: 90
	(Mathematics)							
Course	To introduce ordinary differential equations, general, particular, explicit, implicit							
Objective	and singular solutions of a differential equation. This course further explains the							
	analytic techniques in computing the solutions of various ordinary differential							
	equations.							
Course								
Outcomes	After going through this course the students will be able to							
	• Understand the genesis of ordinary differential equations.							
	• Learn various techniques of getting exact solutions of solvable first order							
	differential equations and linear differential equations of higher order.							
	• Know Picard's method of obtaining successive approximations of solutions of							
	first order differential equations, passing through a given point in the plane and							
	Power series method for higher order linear equations, especially in cases							
	when there is no method available to solve such equations.Grasp the concept of a general solution of a linear differential equation of an							
	arbitrary order and also learn a few methods to obtain the general solution of							
	such equations.							
	• Formulate mathematical models in the form of ordinary differential equations							
	to suggest possible solutions of the day to day problems arising in physical,							
	chemical and biological disciplines.							
					Hours			
	der Differential H	-						18
Basic concepts and genesis of ordinary differential equations, Order and degree of a								
differential equation, Differential equations of first order and first degree, differential								
Equations in which variables are separable, Homogeneous differential equations, Linear								
differential equations and equations reducible to linear form, Exact differential equations,								

Integrating factor, First order higher degree differential equations solvable for x, y and p.				
Clairaut's form and singular solutions. Picard's method of successive approximations and the				
statement of Picard's theorem for the existence and uniqueness of the solutions of the first				
order differential equations.				
Unit-II: Second Order Linear Differential Equations	18			
Statement of existence and uniqueness theorem for linear differential equations, General	10			
theory of linear differential equations of second order with variable coefficients, Solutions of				
homogeneous linear differential equations of second order with constant coefficients,				
Transformations of the equation by changing the dependent/independent variable, Method of				
variation of parameters and method of undetermined coefficients, Reduction of order, Coupled				
linear differential equations with constant coefficients.				
Unit-III: Higher Order Linear Differential Equations	18			
Principle of superposition for a homogeneous linear differential equation, Linearly dependent				
and linearly independent solutions on an interval, Wronskian and its properties, Concept of a				
general solution of a linear differential equation, Linear homogeneous and non-homogeneous				
differential equations of higher order with constant coefficients, Euler-Cauchy equation,				
Method of variation of parameters and method of undetermined coefficients, Inverse operator				
method.				
Unit-IV: Series Solutions of Differential Equations	18			
Power series method, Legendre's equation, Legendre polynomials, Rodrigue's formula,				
Orthogonality of Legendre polynomials, Frobenius method, Bessel's equation, Bessel				
functions and their properties, Recurrence relations.				
Unit-V: Applications	18			
Orthogonal trajectories, Acceleration-velocity model, Minimum velocity of escape from	10			
Earth's gravitational field, Growth and decay models, Malthusian and logistic population				
models, Radioactive decay, Drug assimilation into the blood of a single cold pill; Free and				
forced mechanical oscillations of a spring suspended vertically carrying a mass at its lowest				
tip, Phenomena of resonance, LCR circuits, Lotka-Volterra population model.				
References:				
1. Shepley L. Ross (2007). Differential Equations (3rd edition), Wiley India, (Textbook).				
	a th			

2. E.A. Coddington and N. Levinson (2016). Theory of $\ Ordinary \ Differential \ Equations (18^{th}$

edition), Tata McGRAW-Hill.

- 3. Belinda Barnes & Glenn Robert Fulford (2015). Mathematical Modelling with Case Studies: A Differential Equation Approach Using Maple and MATLAB (2nd edition). Chapman & Hall/CRC Press, Taylor & Francis.
- 4. H. I. Freedman (1980). Deterministic Mathematical Models in Population Ecology. Marcel Dekker Inc.
- 5. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley.
- 6. George F. Simmons (2017). Differential Equations with Applications and Historical Notes (3rd edition). CRC Press. Taylor & Francis.

 B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in Ordinary Differential Equations (2nd edition). Narosa.

Course	Course Name: Course Code: SBSMAT 03 02 01							
No: 07	प्राचीनभारतीयसंस्कृतिः, दर्शनं भाषाविज्ञानं च (1) AECC 3104							
	Dreaman Same II I T D Credite Contact Has							
Batch:	Program:	Sem: II	L	Т	Р	Credits	Contact Hr	rs
2022-27	Integrated						per Week:	4
	BSc-MSc		3	1	0	4	Total Hours	
	(Mathematics)						60	
Course	1. संस्कृतेतर-	विषयाणामध्ये	तृभ्यः	संस्कृत	ाध्ययनाय	सौकर	। र्गित्पादनम्;	2.
Objective	भारतीयज्ञानसंपदाधाः	रभुतानां वेदावि	- दे-शास्त्राण	ाम्पनिषदां	च रुचिरुल	पादनम्; 3.	संस्कृतेनोपनिब	द्धानां
/उद्देश्यः	नीतिवाक्यानां गीताय	<u>.</u>		v		•	-	
	परिचयः।					,		
	पाठ्यक्रमाध्ययनस्र	य फलम् / Co	ourse L	evel Lea	rning O	utcome:		
		Ň			U			
			-शास्त्राण	ामुपनिषदां	च तत्त्वा	न् ज्ञात्वा स्व	ाध्याय प्रयत्नर्श	ीलाः
		भवेयुः।						
	●व्य	ावहारिकदष्टया	। संस्कत	ज्ञानेन अन	यविषयाण	ामध्येतारः त	ात्तद् स्वविषयाः	नगणं
		संस्कृतभाषाया						55
		_				_		
						विषयाणा	सम्यगध्ययनेनास	माक
		पूर्वजानां वैदुष्ये	ण पारचर	यः सजायत <u>ा</u>	l			
	●भा	रतीय-चिन्तनप	रम्परायाः	समृद्धिं ज्ञा	ातुमयं पाठ् [,]	यक्रमः प्रकृष्ट	माध्यमः संजायेत	त।
Unit No.		Con	tent of	Each Un	it		Hours	
Ι	घटकम्-1: (क) यजु	र्वेदः (34. 1-6)-शिवसंव	क्ल्पमन्त्राः;	(ख) तैत्तिर्र	ोयोपनिषद् -	12	
	े शिक्षावल्ली (अनुशास	יבאיבווובו				•		
		~						
II	घटकम्-2: भर्तृहरिः-	नीतिशतकम् : 🛙	1-50 %ਹੇ	काः			12	
1								
TIT	घटकम-३ . भगवदीता	। – ततीयाध्याय	: (कर्मयोग	T:)			12	
III	घटकम्-3: भगवद्गीता	। – तृतीयाध्याय	ः (कर्मयोग	Τ:)			12	
III IV	घटकम्-3: भगवद्गीता घटकम्-4: सामान्यभ	<u> </u>			्रिमाम उन्न	ב ורבוונגווונו	12	

	1171-11.01.						
	प्रयत्नाश्च;						
V	घटकम्-5: सामान्यभाषाविज्ञानम्- भाषाविज्ञानस्य सामान्यः परिचयः,	12					
	भाषापरिवर्तनस्य कारणानि, अर्थपरिवर्तनस्य कारणानि च						
अनुशंसित	ाग्रन्थाः -						
1. उवव्ट-म	हीधर, शुक्लयजुर्वेदभाष्य, मोतीलाल बनारसीदास, दिल्ली, 2007						
2. स्वामी व	यानन्द सरस्वती, यजुर्वेदभाष्य, सम्पा० ब्रह्मदत्त जिज्ञासु, रामलाल कपूर ट्रस्ट, सोनीपत (हरियाणा)						
3. तैत्तिरीय	ापनिषद्, हिन्दी व्याख्याकार - स्वामी प्रखर प्रज्ञानन्द सरस्वती, काशी, 2013						
4. भर्तृहरि,	नीतिशतक, सम्पादक एवं हिन्दी व्याख्याकार - जनार्दन शास्त्री पाण्डेय, मोतीलाल बनारसीदास, वि	रेल्ली, 2014					
5. नीतिशत	कम्, 'नीतिपथ' हिन्दी व्याख्याकार - राजेश्वर शास्त्री मुसलगाँवकर, चौखम्भा, वाराणसी						
6. श्रीमद्भग	वद्गीता (हिन्दी अनुवाद सहित), गीता प्रैस, गोरखपुर, 2015						
7. श्रीकृष्ण	त्रिपाठी, श्रीमद्भगवद्गीता (द्वितीय, तृतीय एवं चतुर्थ अध्याय), 2005						
8. देवीदत्त	शर्मा, भाषिकी और संस्कृत भाषा, हरियाणा साहित्य अकादमी, चण्डीगढ़, 1990						
9. कपिलदे	व द्विवेदी, भाषा-विज्ञान एवं भाषा-शास्त्र, विश्वविद्यालय प्रकाशन, चौक, वाराणसी, 2012						
10. कर्णसिं	ह, भाषाविज्ञान, साहित्य भण्डार, मेरठ						
11. Burre	ow, T., The Sanskrit Language, 2016						
12. Gune	e, P.D., An Introduction to Comparative Philology, Oriental Book Hous	se, Poona, 1958					
13. The Taittirīya Upanişad, Eng. Tr. and Commentary by Swami Muni Narayana Prasad, D.k. Print world (P),							
Ltd	., New Delhi-2009						
14. The	Nīti and Vairāgya Śatakas of Bhartrihari, M.R. Kale, Motilal Banarsid	ass, Delhi, 2017.					

Course No: 08	Course Name: हिंदी भाषा : रचना एवं व्यवहार.Course Code: SBSMA AECC 3104						SMAT 03 02 02			
Batch: 2022-27	Program: Integrated	Sem: II	L	Т	Р	Credits	Contact Hrs per Week: 04			
	BSc-MSc (Mathematics)		3	1	0	4	Total Hours: 60			
Course Objective	• भाषा, व्याक	 भाषा, व्याकरण एवं साहित्य के सामान्य स्वरूप का निदर्शन । 								
Course Outcomes	 भाषा, बोली और व्याकरण के विविध घटकों का परिचय । 									
		Conter	nt of Each	Unit			Hours			
भाषा की परिभाष भाषा और व्याक	Content of Each Cint Unit –I भाषा और व्याकरण भाषा की परिभाषा एवं विशेषताएं 12 भाषा और व्याकरण 12 हिंदी की ध्वनियों का वर्गीकरण (स्वर, व्यंजन और वर्तनी) 12									
Unit –II हिंदी की संवैधानिक स्थिति 12 हिंदी भाषा व बोलियों का संक्षिप्त परिचय 12 हिंदी की संवैधानिक स्थिति : राजभाषा, संपर्क भाषा और राष्ट्रभाषा 12 कार्यालयी हिंदी : पल्लवन, संक्षेपण, टिप्पण 12 पत्र लेखन : सरकारी, अर्द्ध-सरकारी 12										
	Unit –III संचार माध्यमों का स्वरूप एवं भाषा संचार माध्यमों का स्वरूप एवं भाषा									

संचार माध्यमों का सामाजिक प्रभाव	
कंप्यूटर में हिंदी का अनुप्रयोग	
	10
Unit -IV	12
कहानी : चंद्रधर शर्मा 'गुलेरी' : उसने कहा था; प्रेमचंद : नशा	
निबंध : हजारी प्रसाद द्विवेदी : नाखून क्यों बढ़ते हैं; बालमुकुंद गुप्त : बनाम लार्ड कर्जन	
Unit -V	12
कविता : सूर्यकांत त्रिपाठी 'निराला' : वर दे, वीणा वादिनी वर दे ! जयशंकर प्रसाद : हिमाद्रि तुंग शृंग से	
अनुशंसित पुस्तकें :	
1. हिंदी : उद्भव, विकास और रूप; डॉ हरदेव बाहरी; किताब महल इलाहाबाद; 1969.	
2. हिंदी भाषा; डॉ भोलानाथ तिवारी; किताब महल, इलाहाबाद; 2004.	
3. हिंदी व्याकरण; कामता प्रसाद गुप्त; नागरी प्रचारिणी सभा, काशी; 1927.	
4. व्यावहारिक हिंदी व्याकरण तथा रचना; हरदेव बाहरी; लोकभारती प्रकाशन, इलाहाबाद; 1972.	
 कंप्यूटर और हिंदी; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2015. 	
6. रेडियो और दूरदर्शन पत्रकारिता; हरिमोहन; तक्षशिला प्रकाशन, दिल्ली; 2017.	

Course	Course Name:	urse Name: English			Course Code: SBSMAT 03 02 03 AECC 3104					
No: 09										
Batch:	Program:	Sem: II	L	T P Credits Co				ontact Hrs per		
2022-27	Integrated						We	eek: 04		
	BSc-MSc		3	1	0	4	To	otal Hours: 60		
	(Mathematics)									
Course	To introduce stu	dents to the	theory, 1	fundamenta	ls and t	ools of cor	nmu	nication and to		
Objective	develop in them	vital commu	unication	skills integ	ral to pe	ersonal, soc	ial a	and professional		
	interactions. One	e of the critic	al links a	mong hum	an being	gs and an ir	npoi	rtant thread that		
	binds society tog	ether is the a	bility to s	share though	nts, emo	tions and ic	leas	through various		
	means of com	nunication:	both ve	rbal and r	non-verb	al. In the	co	ntext of rapid		
	globalization and	l increasing r	recognitio	n of social	and cult	ural pluralit	ies,	the significance		
	of clear and effect	ctive commu	nication h	as substanti	ially enh	anced.				
Course	The present cou	rse hones to	address	ome of the	se asnec	ts through	an ii	nteractive mode		
Outcomes	of teaching-learn	-			_	-				
Outcomes	skills. Some of th	• •	and by r	ocusing on	various	unitension	5 01	communication		
	Language of con		various	sneaking sk	rills such	h as person	al d	communication		
	social interaction					-				
	group discussion			-						
	skills such as rep			-				n en us mining		
	While, to an ext	U,	L. L.		natural	to all livin	g be	ings, in today's		
	world of complex						-			
	studying this co		-					-		
	interactions.									
		Conter	nt of Eac	h Unit				Hours		
Unit –I: Th	eory of Commun	ication						12		
Introduction	n: Theory of Con	mmunication	, Types	and modes	s of Co	ommunicati	on.			
Language o	f Communication:	Verbal and	Non-verb	al (Spoken	and Wri	tten) Persor	nal,			
Social and	Business Barriers	and Strategie	es Intra-p	ersonal, Inte	er-perso	nal and Gro	oup			
communica	tion									

Unit –II: Speaking Skills	12					
Speaking Skills: Monologue Dialogue, Group Discussion, Effective Communication/						
Mis- Communication, Interview Public Speech						
Unit –III: Comprehension Summary	12					
Reading and Understanding, Close Reading, Comprehension Summary,						
Paraphrasing.						
Unit –IV: Analysis and Interpretation	12					
Analysis and Interpretation, Translation(from Indian language to English and vice-						
versa), Literary/Knowledge Texts						
Unit –V: Writing Skills	12					
Writing Skills, Documenting, Report Writing, Making notes, Letter writing						
References:						
1. Fluency in English - Part II, Oxford University Press, 2006.						
2. Business English, Pearson, 2008.						
3. Language, Literature and Creativity, Orient Blackswan, 2013.						
 Language through Literature (forthcoming) ed. Dr. Gauri Mishra, Dr Ranjana Kaul, Dr Brati Biswas. 						

Course	Course Name: *******			Course Code: ****** GE 5106			
No: 10	GE2						
Batch:	Program:	Sem: II	L	Т	Р	Credits	Contact Hrs
2022-27	Integrated BSc-MSc						per Week: 6
	(Mathematics)		5	1	0	6	Total
							Hours: 90

SEMESTER – III

				Maximum Mar					
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks			
SBSMAT 03 03 01 C 5106	Real Analysis	6	105	45	-	150			
SBSMAT 03 03 02 C 5106	Group Theory	6	105	45	-	150			
SBSMAT 03 03 03 C 5106	Probability and Statistics	6	105	45	-	150			
SEC1		4	70	30	-	100			
GE3		6	105	45	-	150			
	Total marks	of Semester-	III			700			

Course	Course Name:Real AnalysisCourse Code:SBSMAT 03 03 01 C 5106							06		
No: 11										
Batch:	Program:	Sem: III	L	T P Credits Contact Hrs						
2022-27	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Total l	Hours: 90		
	(Mathematics)									
Course	This course prese	ents a rigorou	s treatment	of fundame	ntal cor	cepts in an	alysis. To	o introduce		
Objective	students to the	fundament	als of ma	thematical	analysi	s and rea	ading an	d writing		
	mathematical pro	ofs. The cou	rse objectiv	ve is to under	rstand t	he axiomat	ic founda	tion of the		
	real number syste	em, in particu	lar the noti	on of compl	eteness	and some of	of its con	sequences;		
	understand the c	oncepts neig	ghborhood	of a point, o	countab	ole sets , se	equence a	and series,		
	rigorously define	ed;. Students	should als	so have atta	ined a	basic level	l of com	petency in		
	developing their	own mathe	ematical arg	guments and	d comr	nunicating	them to	others in		
	writing.									
Course	After going	g through thi	s course th	e students w	vill be a	able to				
Outcomes		5 0								
	• Understar	nd many prop	perties of th	e real line \mathbb{R}	and lea	arn to defin	e sequen	ce in terms		
	of functio	ns from \mathbb{R} to	a subset of	R.						
	Recognize	e bounded, c	convergent,	divergent, C	Cauchy	and monot	onic sequ	iences and		
	to calcula	te their limit	superior, li	mit inferior,	and the	limit of a b	bounded s	sequence.		
	Apply the	e ratio, root,	alternating	series and li	mit cor	nparison te	sts for co	onvergence		
	and absol	ute converge	nce of an in	finite series	of real	numbers.				
	Learn sor	ne of the pro	perties of F	Riemann inte	egrable	functions, a	and the a	pplications		
	of the fun	damental the	orems of in	tegration.						
		Content	of Each U	nit				Hours		
Unit-I: Real	Number System							18		
Algebraic an	d order properties	of R, Absol	ute value o	of a real nun	nber; B	ounded abo	ove and			
bounded belo	ow sets, Supremum	n and infimu	m of a non	empty subse	et of ℝ,	The comp	leteness			
property of \mathbb{R}	R, Archimedean pro	operty, Densi	ity of ration	al numbers i	in R, D	efinition ar	nd types			
of intervals,	of intervals, Nested intervals property; Neighborhood of a point in \mathbb{R} , Open, closed and									

perfect sets in \mathbb{R} , Connected subsets of \mathbb{R} , Cantor set and Cantor function.	
Unit-II: Sequences of Real Numbers	18
Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems, Monotone	
sequences, Monotone convergence theorem, Subsequences, Bolzano-Weierstrass theorem for	
sequences, Limit superior and limit inferior of a sequence of real numbers, Cauchy sequence,	
Cauchy's convergence criterion.	
Unit-III: Infinite Series	18
Convergence and divergence of infinite series of positive real numbers, Necessary condition	
for convergence, Cauchy criterion for convergence; Tests for convergence of positive term	
series; Basic comparison test, Limit comparison test, D'Alembert's ratio test, Cauchy's nth	
root test, Integral test; Alternating series, Leibniz test, Absolute and conditional convergence,	
Rearrangement of series and Riemann's theorem.	
Unit-IV: Riemann Integration	18
Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem	
of integral calculus, First mean value theorem, Bonnet and Weierstrass forms of second mean	
value theorems.	
Unit-V: Uniform convergence and Improper integral:	18
Pointwise and uniform convergence of sequence and series of functions, Weierstrass's M-	
test, Dirichlet test and Abel's test for uniform convergence, Uniform convergence and	
continuity, Uniform convergence and differentiability, Improper integrals, Dirichlet test and Abel'stest for improper integrals.	
References:	
1. Robert G. Bartle & Donald R. Sherbert (2015). Introduction to Real Analy	ysis (4

- edition).Wiley India, (Textbook).
- 2. W. Rudin (2017), Real and Complex Analysis, Tata McGRAW Hill.
- Gerald G. Bilodeau, Paul R. Thie & G. E. Keough (2015). An Introduction to Analysis (2nd edition), Jones and Bartlett India Pvt. Ltd.
- 4. K. A. Ross (2013). Elementary Analysis: The Theory of Calculus (2nd edition). Springer.

Course	Course Name: Group TheoryCourse Code: SBSMAT 03 03 02 C 5106							5		
No: 12										
Batch:	Program:	Sem: III	L		Т	Р	Credits	Contac	t Hrs per	
2022-27	Integrated							Week:	06	
	BSc-MSc		5		1	0	6	Total	Hours: 90	
	(Mathematics)									
Course	To introduce bas	ic structures	of algeb	ra lik	e group	, dihedra	al groups, j	permutat	ion group	
Objective	Abelian group,	non-Abelia	n group	and	cyclic	group v	which are t	the main	pillars of	
	modern group th	eory. The c	ourse gi	ves th	ne stud	ent a goo	od mathem	atical ma	aturity and	
	enables to build r	nathematical	thinking	g and s	kill.					
<u> </u>				.1	1 .	•11 1	11 /			
Course	After going	g through thi	s course	the st	tudents	will be a	able to			
Outcomes	Recognize	e the mathem	natical ob	jects	called g	groups.				
	• Link the f	undamental o	concepts	of gro	oups an	d symme	tries of geo	metrical	objects.	
		he significar	-	-	-	•	•		•	
	groups.	8				,		0 1 /		
		onsequences	of Lagra	ange's	theore	m.				
		out structure p	-	-			os and their	conseque	ences	
			ent of Ea						Hours	
Unit.I. Grou	ips and its Elemer								18	
	of a square, De	• •		nles d	of grou	uns inclu	uding dihe	dral	10	
•	and quaternion grou		-		-	-	uting tine	urai,		
permutation		ups, Liement	ary prop	011105	or grou	ps.				
Unit-II: Sub	groups and Cyclic	c Groups							18	
Subgroups a	and examples of	subgroups,	Cyclic g	groups	, Prop	erties of	cyclic gro	oups,		
Lagrange's tl	heorem, Euler phi f	unction, Eule	er's theor	rem, F	ermat's	s little the	eorem.			
Unit-III: No	rmal Subgroups								18	
	cosets, Normal su	bgroups, Sin	nple grou	ups, F	actor g	roups, Ca	uchy's the	orem		
•	elian groups; Cen	•		•	-		-			
	lassification of sub					0 °r,				
		6 - r - or of	5.55 81.54	T						

Unit-IV: Permutation Groups	18					
Cycle notation for permutations, Properties of permutations, Even and odd permutations,						
alternating groups, Cayley's theorem and its applications.						
Unit V. Crown Homemorphisms, Dings and Fields	10					
Unit-V: Group Homomorphisms, Rings and Fields	18					
Group homomorphisms, Properties of homomorphisms, Group isomorphisms, Properties						
of isomorphisms; First, second and third isomorphism theorems for groups; Definitions						
and elementary properties of rings and fields.						
References:						
1. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage	÷,					
(Textbook).						
2. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th edition). Pearson	n					
(Textbook).						
3. Michael Artin (2014). Algebra (2nd edition). Pearson.						
4. I.N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India.						
5. Nathan Jacobson (2009). Basic Algebra I (2nd edition). Dover Publications.						
6. Ramji Lal (2017). Algebra 1: Groups, Rings, Fields and Arithmetic. Springer.						
7. I.S. Luthar & I.B.S. Passi (2013). Algebra: Volume 1: Groups. Narosa.						

Course	Course Name: Probability and StatisticsCourse Code: SBSMAT 03 03 03								
No: 13									
Batch:	Program:	Sem: III	L	Т	P	Credits	Contact	t Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Total H	lours: 90	
	(Mathematics)								
Course	To provide an u	nderstanding	g of the basic	c concepts	s in prot	pability the	ory and	statistical	
Objective	analysis. Students	s will learn th	ne fundament	al theory o	of distrib	ution of ran	dom vari	ables, the	
	basic theory and	techniques of	of parameter	estimation	and test	ts of hypoth	neses. Aft	ter taking	
	this course, stude	ents will be a	ble to use ca	lculators a	nd tables	s to perform	n simple	statistical	
	analyses for smal	l samples an	d use popular	statistics	packages	s, such as S	AS, SPSS	S, S-Plus	
	R or MATLAB, to perform simple and sophisticated analyses for large samples.								
Course Outcomes	 Understar variables. Establish correlation Understar 	a formulation a formulation n and linear n nd central lin frequencies	s course the s ons in the s n helping to p regression. mit theorem, of so many na ntent of Each	etudy of the predict one which estimates a second state of the predict of the second state of the second s	the joint e variable stablish	t behaviou e in terms o the remark	of the oth	er that is, that the	
Unit-I: Prob	ability Functions				1			18	
	ns of probability,					e, Bave's t	theorem:	10	
	iables - Discrete a		1 2	1			·		
	functions; Trans						-		
-	unction, Characteris			I	,	,			
	variate Discrete a							18	
	tributions: Uniform			-					
Poisson; Co	ntinuous distributi	ions: Unifor	m, Gamma,	Exponent	tial, Chi	i-square, B	leta and		
nomal Nom	nal approximation	1 1.						1	

Unit-III: Bivariate Distribution

Joint cumulative distribution function and its properties, Joint probability density function, Marginal distributions, Expectation of function of two random variables, Joint moment generating function, Conditional distributions and expectations.

Unit-IV: Correlation, Regression and Central Limit Theorem

The Correlation coefficient, Covariance, Calculation of covariance from joint moment generating function, Independent random variables, Linear regression for two variables, The method of least squares, Bivariate normal distribution, Chebyshev's theorem, Strong law of large numbers, Central limit theorem and weak law of large numbers.

Unit-V: Modeling Uncertainty

Uncertainty, Information and entropy, Uniform Priors, Polya's urn model and random graphs.

References:

- 1. Irwin Miller & Marylees Miller (2014). John E. Freund's Mathematical Statistics with Applications (8thedition). Pearson. Dorling Kindersley Pvt. Ltd. India, (**Textbook**).
- Robert V. Hogg, Joseph W. McKean & Allen T. Craig (2013). Introduction to Mathematical Statistics (7th edition), Pearson Education.
- 3. Jim Pitman (1993). Probability, Springer-Verlag.
- 4. Sheldon M. Ross (2014). Introduction to Probability Models (11th edition). Elsevier.
- M. Yaglom and I. M. Yaglom (1983). Probability and Information. D. Reidel Publishing Company. Distributed by Hindustan Publishing Corporation (India) Delhi.
- 6. V.K. Kapoor and S. C. Gupta (2018). Fundamental of Mathematical Statistics, S. Chand & Sons.

18

18

18

Course	Course Name:	Course Name:Course Code: SBSMAT 03 03 01 SE									
No: 14	Logic, Sets and	Graph Theory	У								
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact	Hrs per			
2022-27	Integrated						Week:	04			
	BSc-MSc		3	1	0	4	Total H	ours: 60			
	(Mathematics)										
Course	To introduce stud	To introduce students with the fundamental concepts in set, logic and graph theory, with a									
Objective	sense of some	sense of some its modern applications. They will be able to use these methods in									
	subsequent cours	subsequent courses in the design and analysis of algorithms, computability theory, software									
	engineering, and	engineering, and computer systems.									
Course	After going	g through thi	s course fl	ne studen	ts will h	be able to					
Outcomes		, unougn un									
outcomes	Analyze	the truth and	d falsity o	f a logic	al staten	nent and di	fferentiate	between a			
	logical sta	atement and a	an ordinary	v statemer	nt.						
	• Define an	d describe va	arious prop	erties of	sets.						
	Describe	the fundamer	ntal proper	ties of Gr	aph The	ory.					
	• Identify d	ifferent repre	esentations	of a Graj	ph for pr	actical appli	cations.				
								Hours			
		Cont	tent of Ea	ch Unit							
Unit-I: Logi	c							12			
Introduction	, propositions,	truth table	e, negatio	on, con	junction	and dis	junction.				
Implications	, biconditional	propositions	s, conve	rse, con	itra pos	sitive and	inverse				
propositions	and precedence	of logical	operators.	Proposi	tional e	quivalence:	Logical				
equivalences	s. Predicates and c	uantifiers: In	ntroductio	n, Quant	ifiers, B	inding varia	ables and				
Negations.											
Unit-II: Set	Theory							12			
	·	nd the laws	of set the	orv and V	Venn dia	agrams. Exa	mples of				
	Sets, subsets, Set operations and the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty										
				-		roportios	or empty				
Set. Standard	set. Standard set operations. Classes of sets. Power set of a set.										

Unit-III: Relation on Sets	12
Difference and Symmetric difference of two sets. Set identities, generalized union and	
intersections. Relation: Product set, Composition of relations, Types of relations,	
Partitions, Equivalence Relations with example of congruence modulo relation, Partial	
ordering relations, n-ary relations.	
Unit-IV: Graph Theory	12
Definition, examples and basic properties of graphs, pseudo graphs, complete graphs, bi-	
partite graphs, isomorphism of graphs, paths and circuits, Eulerian circuits, Hamiltonian	
cycles.	
-	
Unit-V: Application of Graph Theory	12
The adjacency matrix, weighted graph, travelling salesman's problem, shortest path,	
Dijkstra's algorithm, Floyd- Warshall algorithm, Tree, Binary tree, rooted tree, spanning tree.	
References:	
1. Rosen, K. H. Discrete Mathematics and Its Applications. 7th edition, Tata McGraw 2011, (Textbook).	Hill,
2. E. G. Goodaire and M. M. Parmenter, Discrete Mathematics with Graph Th	neory 2nd
Edition, Pearson Education (Singapore) P. Ltd., Indian Reprint 2003, (Textbook).	
3. R.P. Grimaldi, Discrete Mathematics and Combinatorial Math	ematics,
Pearson Education, 2018.	
 Lipschutz, S., Lipson, M.L. and Patil, V.H. <i>Discrete Mathematics</i>. Schaum's Outline Se McGraw-Hill Education, 2020. 	ries, Tata
5. B.A. Davey and H.A. Priestley. Introduction to Lattices and Order, Cambridge	University

5. B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge University Press, Cambridge,1990.

Course	Course Name: Computer Fundamentals Course Code: SBSMAT 03 03 02 S							C 3024	
No: 15	and Programming	g in C							
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact	Hrs per	
2022-27	Integrated						Week:	05	
	BSc-MSc	BSc-MSc 3 0 2 4 Total Ho							
	(Mathematics)								
Course	To familiarize the	e students wi	th problem so	olving thro	ough C	-programmi	ng. The co	urse aims	
Objective	to give exposure to basic concepts of the C-programming. The lab component						nt of this		
	course is designed to provide hands-on-training with the concepts.								
Course	After going	through thi	s course the	students v	vill be	able to			
Outcomes		, unough un	s course the	students v	viii be				
outcomes	• Write and	l run a C pro	ogram along	with grad	ual im	provement u	using effic	ient error	
	handling.								
	• Implement	nt selective	structures an	nd repetit	ive str	uctures in	C program	ns using	
	different o	control staten	nents.						
	• To empha	size on the in	mportance of	use of poi	nters fo	or efficient (C programi	ning.	
	• Use struct	tures and uni	ons in a C pro	ogram for	handlir	ng multivari	ate data.		
	•								
		Cor	ntent of Each	n Unit				Hours	
Unit-I: C La	anguage Prelimin	aries						15	
An overviev	v of Programming	, Programmi	ing Language	e, Classifi	cation	Basic strue	cture of a		
	C language prel	-							
-	Bitwise Assignmen		-	-			-		
				-					
	nit-II: Arrays and Pointers							15	
•	Pointers, Encrypti		• -			-			
	rguments, Access			-		•	-		
Function Ar	guments. Multidi	mensional A	rrays. Array	s of Point	ters, Po	ointers to Po	ointers.		

Unit-III: Storage Classes	15
Storage Classes –Fixed vs. Automatic Duration. Scope. Global Variables. Definitions and	
Allusions. The Register Specifier. ANSI rules for the Syntax and Semantics of the Storage	
Class Keywords.	
Unit-IV: Structures and Unions	15
Dynamic Memory Allocation. Structures and Unions. enum declarations. Passing	
Arguments to a Function, Declarations and Calls, Automatic Argument Conversions,	
Pointers to Functions.	
Unit-V: C Preprocessors	15
The C Preprocessors, Macro Substitution. Include Facility. Conditional Compilation. Line	
Control. Input and Output -Streams. Buffering. Error Handling. Opening and Closing a File.	
Reading and Writing Data. Selecting an I/O Method. Unbuffered I/O. Random Access. The	
Standard Library for I/O.	
References:	
1. Y. Kanetkar (2020), Let us C, 15 th edition, BPB Publication, (Textbook).	
2. Brian W. Kernighan & Dennis M. Ritchie, The C Program Language, Second Edition	n (ANSI
features), Prentice Hall 2019.	
3. Peter A. Darnell and Philip E. Margolis, C: A Software Engineering Approach,	Narosa
Publishing House (Springer International Student Edition) 2003.	
4. Samuel P. Harkison and Gly L. Steele Jr., C: A Reference Manual, Second Edition,	Prentice
Hall, 2014.	
5. Balagurusamy E: Programming in ANSI C, Third Edition, Tata McGraw-Hill Pu	blishing
Co. Ltd., 2018.	onsing
6. Byron, S. Gottfried: Theory and Problems of Programming with C, Second Edition (Schaum
Outline Series), Tata McGraw-Hill Publishing Co. Ltd., 2017.	
7. Venugopal K. R. and Prasad S. R.: Programming with C, Tata McGraw-Hill Publishin Ltd., 2020.	ng Co.

Course	Course Name: *******			Course Code: ****** GE 5106					
No: 16	GE3								
Batch:	Program:	Sem: III	L	Т	Р	Credits	Contact Hrs		
2022-27	Integrated BSc-MSc						per Week: 6		
	(Mathematics)		5	1	0	б	Total		
							Hours: 90		

SEMESTER – IV

			Maximum Marks					
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks		
SBSMAT 03 04 01	Mechanics	6	105	45	-	150		
C 5106								
SBSMAT 03 04 02	Linear Algebra	6	105	45	-	150		
C 5106								
SBSMAT 03 04 03	Partial Differential	6	105	45	-	150		
105106	Equations and Calculus of Variation							
SEC1		4	70	30		100		
GE4		6	105	45		150		
	Total mark	s of Semester-	IV			700		

Course	Course Name: MechanicsCourse Code: SBSMAT 0							01 C 5106		
No: 17										
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Conta	act Hrs per		
2022-27	Integrated	Integrated Week: 08								
	BSc-MSc		5	1	0	6	Total	Hours: 90		
	(Mathematics)									
Course	This course aim	s to impart kn	owledg	e in m	echanic	es used for	the de	rivation of		
Objective	important results and problems related to rigid bodies. The objective is to give the									
	students a mechai	nical approach f	or solv	ing the	problen	ns related to	the me	chanics.		
Course	After going	g through this co	ourse t	he stud	ents wi	ll be able to	1			
Outcomes	 drawn ma Understar various fo forces act Determine equilibriu Deal with particle in Learn that know the 	the with subject m thematicians, ph ad necessary con- proces and learn th ing on a rigid bo e the centre of g m of a uniform of the kinematics cluding the con- ta particle movi Kepler's laws of the mathemat	nysicist nditions he prin- ody. ravity o cable h and kir straineo ng und f the pl	s, astron for the ciple of of some anging netics of d oscilla er a cen anetary	nomers, equilib virtual materia freely u the rec tory mo tral for motion	and engined rium of part work for a s distic system nder its own tilinear and ptions of par ce describes s, which we	ers toge icles ac ystem o ns and o weigh planar n ticles. a plane	ether. eted upon by of coplanar discuss the t. motions of a e curve and		
1		Content of	Each	Unit				Hours		
Unit-I: Static	2S							18		

Equilibrium of a particle, Equilibrium of a system of particles, Necessary conditions of equilibrium, Moment of a force about a point, Moment of a force about a line, Couples, Moment of a couple, Equipollent system of forces, Work and potential energy, Principle of virtual work for a system of coplanar forces acting on a particle or at different points of a rigid body, Forces which can be omitted in forming the equations of virtual work.

Unit-II: Centres of Gravity and Common Catenary	18					
Centres of gravity of plane area including a uniform thin straight rod, triangle, circular						
arc, semicircular area and quadrant of a circle, Centre of gravity of a plane area						
bounded by a curve, Centre of gravity of a volume of revolution; Flexible strings,						
Common catenary, Intrinsic and Cartesian equations of the common catenary,						
Approximations of the catenary.						
	10					
Unit-III: Rectilinear Motion	18					
Simple harmonic motion (SHM) and its geometrical representation, SHM under elastic						
forces, Motion under inverse square law, Motion in resisting media, Concept of						
terminal velocity, Motion of varying mass.						
Unit-IV: Motion in a Plane	18					
Kinematics and kinetics of the motion, Expressions for velocity and acceleration in Cartesian, polar and intrinsic coordinates; Motion in a vertical circle, projectiles in a vertical plane and cycloidal motion.						
Unit-V: Central Orbits	18					
Equation of motion under a central force, Differential equation of the orbit, (p, r)						
equation of the orbit, Apses and apsidal distances, Areal velocity, Characteristics of						
central orbits, Kepler's laws of planetary motion.						
References:						
1. S. L. Loney (2006). An Elementary Treatise on the Dynamics of a Particle and	nd of Rigid					
Bodies. Read Books, (Textbook).						
2. P. L. Srivastava (1964). Elementary Dynamics. Ram Narin Lal, Beni Prasad	Publishers					
Allahabad,						
3. J. L. Synge & B. A. Griffith (1949). Principles of Mechanics. McGraw-Hill.						
4. A. S. Ramsey (2009). Statics. Cambridge University Press.						
5. A. S. Ramsey (2009). Dynamics. Cambridge University Press.						
6. R. S. Varma (1962). A Text Book of Statics. Pothishala Pvt. Ltd.						

Course	Course Name: Linear AlgebraCourse Code: SBSMAT 03 04 02								
No: 18									
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact I	Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Total	Hours: 90	
	(Mathematics)								
Course	The objective of	the course is	to in	troduce	e basic	structures of alge	ebra like mat	rices, system	
Objective	of linear equation	n and linear	transf	ormati	on, ve	ctor space, linear	transformati	ion and inner	
	product spaces v	which are the	e maiı	n pilla	rs of n	nodern mathemat	ics. The cou	rse gives the	
	student a good m	athematical	maturi	ity and	enable	es to build mather	natical think	ing and skill.	
C		.1 1.1	,		<u> </u>				
Course	After going	g through the	is cou	rse the	e stude	nts will be able t	0		
Outcomes	• Understand the concepts of vector spaces, subspaces, bases, dimension and their								
	properties.								
	 Relate matrices and linear transformations, compute eigen values and eigen vectors 								
	of linear transformations.								
	 Learn properties of inner product spaces and determine orthogonality in inner 								
	product spaces.								
	 Realise importance of adjoint of a linear transformation and its canonical form. 								
		I	j					Hours	
		Cont	tent of	f Each	Unit				
Unit-I: Vect	or Spaces							18	
	and examples, Sul	ospace Line	ar si	nan C	Juotien	t space and dir	rect sum of		
	inearly independen	1	-		-		cet sum of		
-		-		-				10	
	ear Transformatio		lines	• +++	aforma	tiona Matuir	of a linear	18	
	and examples, A	•							
	on, Change of coor	unates, Ran	k and	nullity	of a li	near transformati	on and rank-		
nullity theore	em.								

Unit-III: Further Properties of Linear Transformations	18
somorphism of vector spaces, Isomorphism theorems, Dual and second dual of a vector	
space, Transpose of a linear transformation, Eigen vectors and eigen values of a linear	
ransformation, Characteristic polynomial and Cayley-Hamilton theorem, Minimal	
polynomial.	
Unit-IV: Inner Product Spaces	18
Inner product spaces and orthogonality, Cauchy-Schwarz inequality, Gram-Schmidt	
orthogonalisation, Diagonalisation of symmetric matrices.	
Unit-V: Adjoint of a Linear Transformation and Canonical Forms	18
Adjoint of a linear operator; Hermitian, unitary and normal linear transformations; Jordan	
canonical form, Triangular form, Trace and transpose, Invariant subspaces.	
References:	
1. Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003). Line	ar Algebr
(4thedition). Prentice-Hall of India Pvt. Ltd, (Textbook).	
2. Vivek Sahai & Vikas Bist (2013). Linear Algebra (2nd Edition). Narosa Publis	hing Hous
(Textbook).	
3. Kenneth Hoffman & Ray Kunze (2015). Linear Algebra (2nd edition). Prentice-H	all.
4. M. Gel'fand (1989). Lectures on Linear Algebra. Dover Publications.	
5. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications.	
6. Serge Lang (2005). Introduction to Linear Algebra (2nd edition). Springer India.	
7. Gilbert Strang (2014). Linear Algebra and its Applications (2nd edition). Elsevier	

Course No: 19	Course Name: Patient Equations and Ca			Cour	se Code	: SBSMAT (03 04 03	C 5106
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Conta	ct Hrs per
2022-27	Integrated						Week	: 06
	BSc-MSc	-	5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	To introduce part	ial differential e	quations	, general, j	particula	r, explicit, in	nplicit a	nd singular
Objective	solutions of a p	artial different	ial equa	tion. This	course	further exp	olains th	ne analytic
	techniques in com	puting the solu	tions of v	various par	tial diffe	rential equat	ions.	
Course	After going	through this co	ourse the	e students	will be a	ble to		
Outcomes	equations.					-		
	• Model physical phenomena using partial differential equations such as							
	and wave equations.Understand problems, methods and techniques of calculus of variation							
	Understar		ethods a t of Eacl		ues of c	alculus of va	ariations	3. Hours
Unit-I. Fire	t Order Partial Di							18
	egree of Partial dif			F) Conce	nt of line	ear and non.	linear	10
	rential equations,	-						
•	ne special type of e		-				-	
	od, Charpit's gener	•						
Unit-II: Se	cond Order Par	tial Differentia	al Equa	tions wit	h Cons	tant Coeffi	cients	18
Classificatio	n of linear partial d	ifferential equat	tions of s	econd ord	er, Homo	ogeneous and	d non-	
homogeneou	is equations with co	onstant coefficie	nts.					
Unit-III: Se	cond Order Partia	l Differential H	Equation	s with Va	riable C	oefficients		18
Partial differ	rential equations re	ducible to equa	tions with	th constan	t coeffici	ent, Second	order	
PDE with va	ariable coefficients,	Classification	of secon	d order PE	DE, Redu	ction to can	onical	
or normal f	orm; Monge's met	hod; Solution of	of heat a	ind wave	equation	s in one an	d two	
dimensions l	by method of separa	ation of variable	es.					

Unit-IV: Calculus of Variations-Variational Problems with Fixed Boundaries	18
Euler's equation for functional containing first order and higher order total derivatives,	
Functionals containing first order partial derivatives, Variational problems in parametric	
form, Invariance of Euler's equation under coordinates transformation.	
Unit-V: Calculus of Variations-Variational Problems with Moving Boundaries	18
Variational problems with moving boundaries, Functionals dependent on one and two	
variables, One sided variations. Sufficient conditions for an extremum-Jacobi and Legendre	

References:

conditions, Second variation.

- 1. I. N. Sneddon (2006). Elements of Partial Differential Equations. Dover Publications, (Textbook).
- 2. A. S. Gupta (2004). Calculus of Variations with Applications. PHI Learning, (Textbook).
- 3. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley.
- 4. TynMyint-U & Lokenath Debnath (2013). Linear Partial Differential Equation for Scientists and Engineers (4th edition). Springer India.
- 5. H. T. H. Piaggio (2004). An Elementary Treatise on Differential Equations and Their Applications. CBS Publishers.
- 6. S. B. Rao & H. R. Anuradha (1996). Differential Equations with Applications. University Press.
- L.C. Evans (2014), Partial Differential Equations, American Mathematical Society, Indian 2nd edition.

Course	Course Name: Object Oriented Course Code: SBSMAT 03 04 0					03 04 01 SEC 3024		
No: 20	Programming in	C++						
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact Hrs per	
2022-27	Integrated						Week: 05	
	BSc-MSc		3	0	2	4	Total Hours: 75	
	(Mathematics)							
Course	This course intro	oduces C++ pro	ogrammi	ng in th	e idiom a	and context	of mathematics and	
Objective	imparts a starting orientation using available mathematical libraries, and their applications.							
Course	After going	g through this c	ourse th	ne studer	nts will be	able to		
Outcomes	• Write C+	+-Programs to s	olve Ma	thematic	al nr ohler	ns		
		gorithms to solv				115.		
	Ū.	•	1		Dete Al		h	
	Understar Polymorp	nd the OOPS lik hism.	tes Enca	psulatior	i, Data Ab	straction, Ir	ineritance and	
	Emphasiz programn	e on the import ning.	ance of	use of Fr	iend Func	tions for eff	icient C++	
	1	Content	of Each	Unit			Hours	
Unit-I Chara	acteristics of Obje	ct-Oriented Pr	ogram	ning La	nguages		15	
OOP Paradi	gm: Comparison	of Programmi	ng para	digms, (Character	istics of O	bject-	
Oriented Pro	ogramming Langu	ages, Object-b	ased pr	ogramm	ing langu	ages C++:	Brief	
History of C	C++,Structure of	a C++ program	n, Diffe	erence b	etween C	and C++	- cin,	
cout, new,	delete operators,	ANSI/ISO St	andard	C++, C	Comments	, Working	with	
Variables an	d const Qualifiers	. Enumeration,	Arrays	and Poi	nter.			
Unit-II Impl	ementing OOPS	Concepts in C+	+				15	
Implementin	ng oops concep	ts in C++	Objects,	Class	es, Enca	psulation,	Data	
Abstraction,	Inheritance, Poly	morphism, Dy	namic E	Binding,	Message	Passing, D	efault	
Parameter V	alue, Using Refer	ence variables	with Fu	nctions.				

Unit-III Abstract Data Types	15
Abstract data types, Class Component, Object & Class, Constructors Default and Copy	
Constructor, Assignment operator deep and shallow coping, Access modifiers -	
private, public and protected.	
Unit-IV Implementing Class Functions	15
Implementing Class Functions within Class declaration or outside the Class	
declaration. Instantiation of objects, Scope resolution operator, Working with Friend	
Functions, Using Static Class members. Understanding Compile Time, Polymorphism,	
function overloading, Rules of Operator Overloading (Unary and Binary) as member	
function/friend function,	
Unit-V Implementation of Operator Overloading	15
Implementation of operator overloading of Arithmetic Operators, Overloading	
Output/Input,Prefix/ Postfix Increment and decrement Operators, Overloading comparison	
operators, Assignment, subscript and function call Operator, concepts of namespaces.	
References:	

- 1. A. R. Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, TMH, 1997, (Textbook).
- 2. S. B. Lippman and J. Lajoie, C++ Primer, 3rd Ed., Addison Wesley, 2000, (Textbook).
- 3. B. Eckel, Thinking in C++, 2nd Ed., President, Mindview Inc., Prentice Hall.
- 4. D. Parasons, Object Oriented Programming with C++, BPB Publication.
- 5. B. Stroustrup, The C++ Programming Language, 3rd Ed., Addison Welsley.

Course	Course Name: Linux Operating System Course Code: SBSMAT 03 04 02						
No: 21	and Computer G	aphics					
Batch:	Program:	Sem: IV	L	T	Р	Credits	Contact Hrs per
2022-27	Integrated						Week: 04
	BSc-MSc						
	(Mathematics)		3	1	0	4	Total Hours: 60
Course	This course intro	duces the Ro	le and p	ourpose	of the ope	rating system, F	functionality of a
Objective	typical operating	g system, ma	naging	atomic	access to	OS objects. D	etailed study of
	computer graphic	es, 2 D and 3 I	O transfo	ormations	s, represen	tations and visua	lization.
Course	After going	g through this	course	the stude	ents will b	be able to	
	provide in • Explore h • Identify th • Apply gra	nter- process c ow linux impl ne core concep	ommuni ements ots of co	ication files syst mputer g	ems and m graphics	nanages input out	le processes and tput devices.
	scans		6	technique	es to crea	te and design co	Omputer graphics
	scans	Conter		ch Unit	es to crea	te and design co	OMPUTER graphics
Unit-I Linux	scans x – The Operating				es to crea	te and design co	
		System	nt of Ea	ch Unit			Hours
Linux – Th	x – The Operating	System em: Linux h	nt of Ea	ch Unit Linux fe	eatures, L	inux distributio	Hours 12 ns,
Linux – Th Linux's rela	x – The Operating the Operating System	System em: Linux h , Overview c	nt of Ea istory, 2 of Linux	ch Unit Linux fe x archite	eatures, L	inux distributio	Hours 12 ns,
Linux – Th Linux's rela scripts, syste	x – The Operating the Operating Systemationship to Unix,	System em: Linux h , Overview c overview), Lir	nt of Ea istory, 2 of Linux nux Sec	ch Unit Linux fe x archite	eatures, L	inux distributio	Hours 12 ns,
Linux – Th Linux's rela scripts, syste Unit-II Linu	x – The Operating the Operating Systemationship to Unix, the processes (an c	System em: Linux h , Overview c overview), Lir Characteristic	nt of Ea istory, 2 of Linux nux Sec es	ch Unit Linux fe x archite urity.	eatures, L ecture, Ins	inux distributio stallation, Start	Hours Hours 12 ns, up 12
Linux – Th Linux's rela scripts, syste Unit-II Linu The Ext2 an	x – The Operating The Operating Systemationship to Unix, The processes (an operation of the processes (an operation of the the operation of the the operation of the operation	System em: Linux h , Overview c overview), Lin Characteristic ns: General C	nt of Ea istory, 2 of Linux nux Sec es haracter	ch Unit Linux fe x archite urity.	eatures, L ecture, Ins , The Ext3	inux distributio stallation, Start	Hours Hours 12 ns, up 12

Unit-III Resource Management in Linux	12
Resource Management in Linux: file and directory management, system calls for files	
Process Management, Signals, IPC: Pipes, FIFOs, System V IPC, Message Queues,	
system calls for processes, Memory Management, library and system calls for memory.	
Unit-IV Development of Computer Graphics	12
Development of computer Graphics: Raster Scan and Random Scan graphics storages,	
displays processors and character generators, colour display techniques, interactive	
input/output devices.	
Unit-V Computer Graphics of Conic-Section	12
Points, lines and curves: Scan conversion, line-drawing algorithms, circle and ellipse	
generation, conic-section generation, polygon filling anti aliasing. Two-dimensional	
viewing: Coordinate systems, linear transformations, line and polygon clipping algorithms.	
References:	
1. A. Robbins, Linux Programming by Examples The Fundamentals, 2nd E	Ed., Pearson
Education,2008, (Textbook).	
2. K. Cox, Red Hat Linux Administrator's Guide, PHI,2009, (Textbook).	
3. R. Stevens, UNIX Network Programming, 3rd Ed., PHI,2008.	
4. S. Das, Unix Concepts and Applications, 4th Ed., TMH,2009.	
5. E. Siever, Stephen Figgins, Robert Love, Arnold Robbins, Linux in a Nutsh	ell, 6th Ed.,
O'Reilly Media,2009.	
6. N. Matthew, Richard Stones, Alan Cox, Beginning Linux Programming, 3rd Ed.,	,2004.
7. D. Hearn and M.P. Baker, Computer Graphics, 2nd Ed., Prentice–Hall of India,2	004.
8. J.D. Foley, A van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics: Pr	incipals and
Practices, 2nd Ed., Addison-Wesley, MA,1990.	
9. D.F. Rogers, Procedural Elements in Computer Graphics, 2nd Ed., McGraw Company, 2001.	⁷ Hill Book
10. D.F. Rogers and A.J. Admas, Mathematical Elements in Computer Graphic McGraw Hill, 1990.	es, 2nd Ed.,

Course	Course Name: *******			Course Code: ****** GE 5106				
No: 22	GE4							
Batch:	Program:	Sem: IV	L	Т	Р	Credits	Contact Hrs	
2022-27	Integrated BSc-MSc						per Week: 6	
	(Mathematics)		5	1	0	6	Total	
							Hours: 90	

SEMESTER – V

			Maximum Marks					
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks		
SBSMAT 03 05 01 C 5106	Set Theory and Metric Spaces	6	105	45	-	150		
SBSMAT 03 05 02 C 5106	Advanced Algebra	6	105	45	-	150		
DSE1		6	105	45	-	150		
DSE2		6	105	45	-	150		
	Total marks	of Semester-	V		I	600		

Course	rse Course Name: Course Code: SBSMAT 03 0										
No: 23	Set Theory and M	Metric Spaces									
Batch:	Program:	Sem: V	L	T	Р	Credits	Contac	et Hrs per			
2022-27	Integrated						Week:	-			
	BSc-MSc		5	1	0	6		Hours: 90			
	(Mathematics)										
Course	To providing th	e basic knowled	lge pert	aining to	metric s	paces such	as open	and closed			
Objective	balls, neighbo	orhood, interio	or, cl	osure,	subspace	, continui	ity, co	mpactness			
	connectedness et	c.									
Course	After goin	g through this c	ourse th	e studer	nts will be	able to					
Outcomes		6									
outcomes	• Learn bas	• Learn basic facts about the cardinality of a set.									
	• Understand several standard concepts of metric spaces and their properties lik										
	openness	openness, closedness, completeness, Bolzano-Weierstrass property, compactness,									
	and connectedness.										
	• Identify t	he continuity of	a functi	on define	ed on met	ric spaces an	d homeor	morphisms			
								Hours			
		Content	of Each	Unit							
Unit-I: The	orv of Sets							18			
	nfinite sets, Count	table and uncou	ntable s	sets. Car	dinality o	f sets. Schr	öder-				
		neorem, Order r			•						
					iai numoe		the of				
	-	,									
cardinal nur	nbers, Partially ord	,									
	nbers, Partially ord	,									
cardinal nur theoretic par	nbers, Partially ord	lered set, Zorn's						18			
cardinal nur theoretic par Unit-II: Co	nbers, Partially ord adoxes.	lered set, Zorn's	lemma	and Ax	iom of ch	oice, Variou	is set	18			
cardinal nur theoretic par Unit-II: Co Definition	nbers, Partially ord adoxes. ncepts in Metric S	lered set, Zorn's paces f metric space	e lemma	and Ax	iom of ch	oice, Variou	neres,	18			
cardinal nur theoretic par Unit-II: Co Definition Neighbourh	nbers, Partially ord adoxes. ncepts in Metric S and examples of	lered set, Zorn's paces f metric space interior, exterior	e lemma es, Ope	and Ax	iom of ch res and points, C	oice, Variou closed sph losed sets, 1	neres, Limit	18			
cardinal nur theoretic par Unit-II: Co Definition Neighbourhe points and i	nbers, Partially ord adoxes. ncepts in Metric S and examples of bods, Open sets, I	lered set, Zorn's paces f metric space interior, exterior rior and closure	es, Ope and bo of a set	and Ax en sphe bundary t, Bound	iom of ch res and points, C ary of a s	oice, Variou closed sph losed sets, 1	neres, Limit	18			

Unit-III: Complete Metric Spaces and Continuous Functions	18
Cauchy and Convergent sequences, Completeness of metric spaces, Cantor's intersection	
theorem, Dense sets and separable spaces, Nowhere dense sets and Baire's category	
theorem, Continuous and uniformly continuous functions, Homeomorphism, Banach	
contraction principle.	
Unit-IV: Compactness	18
Compact spaces, Sequential compactness, Bolzano-Weierstrass property, Compactness and	
finite intersection property, Heine-Borel theorem, Totally bounded sets, Equivalence of	
compactness and sequential compactness, Continuous functions on compact spaces.	
Unit-V: Connectedness	18
Separated sets, Disconnected and connected sets, Components, Connected subsets of \mathbb{R} ,	
Continuous functions on connected sets.	
References:	
1. E. T. Copson (1988). Metric Spaces. Cambridge University Press, (Textbook).	
2. P. K. Jain & Khalil Ahmad (2019). Metric Spaces. Narosa, (Textbook).	
3. S. Kumaresan (2011). Topology of Metric Spaces (2nd edition). Narosa, (Textbo	ok).
4. Satish Shirali & Harikishan L. Vasudeva (2006). Metric Spaces. Springer-Verlag	
5. Micheál O'Searcoid (2009). Metric Spaces. Springer-Verlag.	
6. G. F. Simmons (2004). Introduction to Topology and Modern Analysis. McGraw	-Hill.
7. P. R. Halmos (1974). Naive Set Theory. Springer.	

Course	Course Name: A	urse Name: Advanced AlgebraCourse Code: SBSMAT 03 05 02 C 5106						urse Name: Advanced AlgebraCourse Code: SBSMAT 03 05 0			05 02 C 5106
No: 24											
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contact Hrs per				
2022-27	Integrated						Week: 06				
	BSc-MSc		5	1	0	6	Total Hours: 90				
	(Mathematics)										
Course	The objective of	the course is to	introduc	e moder	n structu	res of algebra	like group actions				
Objective	orbits and stabili	zers, rings and	l fields, f	field ex	tensions	and finite fie	elds which are the				
	main pillars of m	odern algebra. '	The cours	se gives	the stude	nt a good mat	hematical maturity				
	and enables to bu	ild mathematic	al thinkin	g and sk	xill.						
<u>a</u>		.1 1.1.		. 1		11 /					
Course	After going	g through this c	ourse the	e studen	its will be	e able to					
Outcomes	• Understar	nd the basic con	cepts of g	group ac	tions and	their applicati	ons.				
	Recognize	e and use the Sy	low theo	rems to	character	ize certain fini	te groups.				
	• Know the	e fundamental	concepts	in ring	theory	such as the c	oncepts of ideals				
	quotient r	ings, integral do	omains, a	nd field	8.						
	• Learn in	detail about p	olynomi	al rings	, fundan	nental propert	ies of finite field				
	extension	s, and classifica	tion of fi	nite field	ds.						
							Hours				
		Content	of Each	Unit							
Unit-I: Grou	up Actions						18				
Group actio	ons, Orbits and s	tabilizers, Cor	njugacy	classes,	Orbit-st	abilizer theor	em,				
Normalizer of	of an element of a	group, Center o	of a group	o, Class	equation	of a group, Ir	nner				
and outer aut	tomorphisms of a g	roup.									
Unit-II: Syle	ow Theorems						18				
Cauchy's the	eorem for finite al	oelian groups, 1	Finite sir	nple gro	oups, Syl	ow theorems	and				
applications	including nonsimpl	icity tests.									

Unit-III: Rings and Fields	18
Definition, examples and elementary properties of rings, Commutative rings, Integral	
domain, Division rings and fields, Characteristic of a ring, Ring homomorphisms and	
isomorphisms, Ideals and quotient rings. Prime, principal and maximal ideals, Relation	
between integral domain and field, Euclidean rings and their properties, Wilson and	
Fermat's theorems.	
Unit-IV: Polynomial Rings	18
Polynomial rings over commutative ring and their basic properties, The division algorithm;	
Polynomial rings over rational field, Gauss lemma and Eisenstein's criterion, Euclidean	
domain, principal ideal domain, and unique factorization domain.	
Unit-V: Field Extensions and Finite Fields	18
Extension of a field, Algebraic element of a field, Algebraic and transcendental numbers,	
Perfect field, Classification of finite fields.	
References:	
1. David S. Dummit & Richard M. Foote (2008). Abstract Algebra (2nd edi	tion). Wiley,
(Textbook).	
2. P. B. Bhattacharya, S. K. Jain & S. R. Nagpaul (2003). Basic Abstract Algebra ((2nd edition).
Cambridge University Press, (Textbook).	
3. Michael Artin (2014). Algebra (2nd edition). Pearson.	
4. John B. Fraleigh (2007). A First Course in Abstract Algebra (7th edition). Pearso	n.
5. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition). Cengage	2.
6. N. S. Gopalakrishnan (1986). University Algebra, New Age International Publish	ners.
7. I. N. Herstein (2006). Topics in Algebra (2nd edition). Wiley India.	
8. Thomas W. Hungerford (2004). Algebra (8th edition). Springer.	
9. Nathan Jacobson (2009). Basic Algebra I & II (2nd edition). Dover Publications.	
10. Serge Lang (2002). Algebra (3rd edition). Springer-Verlag.	
11. I. S. Luthar & I. B. S. Passi (2013). Algebra: Volume 1: Groups. Narosa.	
12. I. S. Luthar & I. B. S. Passi (2012). Algebra: Volume 2: Rings. Narosa.	

Course	Course Name: Tensors and DifferentialCourse Code: SBSMAT 03 05 01							OSE 5106
No: 25	Geometry							
Batch:	Program:	Sem: V	L	Т	P	Credits	Conta	ct Hrs per
2022-27	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Total	Hours: 90
	(Mathematics)							
Course	In this course, st	udents will be in	mparted	knowledg	ge to en	able them to	o underst	and several
Objective	concepts of Diff	ferential Geome	try such	as space	e curve	s, surfaces,	curvatur	es, torsion,
	developable and	geodesics.						
Course	After going	g through this co	nirse the	studente	will be	able to		
Outcomes		5 unough uns co		stuuents				
Sucomes	• Explain the Explain the Explanation of the Explan	ne basic concepts	s of tenso	ors.				
	• Understar	nd role of tensors	s in differ	rential ge	ometry.			
	• Learn var	ious properties o	f curves	including	Franat	Sarrat form	ulao and	thair
	applicatio		or curves	menuamg	g Fienet		ulae allu	ulen
			f the our	iotura tan	cor Co	odacia aumus	tura Cau	ice and
		Interpretation of en formulae.			1801, 00	ouesic cuiva	ture, Oau	iss and
	• Understar	nd the role of Ga	use's Th	orem o F	Taragiur	n and its con	sequence	
	• Onderstar		uss s 1 II		sgiegiui		isequence	
								Hours
		Content	of Each	Unit				
Unit-I: Tens								18
Contravariar	nt and covariant vec	ctors, Transforma	ation for	mulae, Te	ensor pr	oduct of two	vector	
spaces, Tens	sor of type (r, s) ,	Symmetric and	skew-sy	mmetric	propert	ies, Contrac	tion of	
tensors, Quo	tient law, Inner pro	duct of vectors.						
Unit-II: Fur	ther Properties of	Tensors						18
	l tensors, Associat		d contra	variant v	vectors,	Inclination	of two	
	orthogonal vectors							
	variant derivatives	·						
•	s, Curvature tensor							
		,						

Unit-III: Curves in \mathbb{R}^2 and \mathbb{R}^3	18
Basic definitions and examples, Arc length, Curvature and the Frenet-Serret formulae,	
Fundamental existence and uniqueness theorem for curves, Non-unit speed curves.	
Unit-IV: Surfaces in R ³	18
Basic definitions and examples, The first fundamental form, Arc length of curves on	
surfaces, Normal curvature, Geodesic curvature, Gauss and Weingarten formulae,	
Geodesics, Parallel vector fields along a curve and parallelism.	
Unit-V: Geometry of Surfaces	18
The second fundamental form and the Weingarten map; Principal, Gauss and mean	
curvatures; Isometries of surfaces, Gauss's Theorem Egregium, The fundamental theorem of	
surfaces, Surfaces of constant Gauss curvature, Exponential map, Gauss lemma, Geodesic	
coordinates, The Gauss-Bonnet formula and theorem.	
References:	1
1. Alferd Gray (2018). Modern Differential Geometry of Curves and Surfaces with M	Iathematica
(4th edition). Chapman & Hall/CRC Press, Taylor & Francis, (Textbook).	
2. A. Pressley ().Elementary Differential Geometry. 2 nd edition, Springer, (Textbook).
3. Christian Bär (2010). Elementary Differential Geometry. Cambridge University Pr	ess.
4. Manfredo P. do Carmo (2016). Differential Geometry of Curves & Surfaces (H	Revised and
updated 2nd edition). Dover Publications.	
5. Richard S. Millman & George D. Parkar (1977). Elements of Differential Geometr	y. Prentice-
Hall.	
6. R. S. Mishra (1965). A Course in Tensors with Applications to Riemannian	Geometry
Pothishala Pvt. Ltd.	
7. Sebastián Montiel & Antonio Ross (2009). Curves and Surfaces. American M	athematical
Society.	

Course	Course Name: Mathematical LogicCourse Code: SBSMAT 03 05 02 DSE 5106						SE 5106		
No: 26									
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	t Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc								
	(Mathematics)		5	1	0	6	Total	Hours: 90	
Course	The objective of	the course is	to introdu	ice basic	structure	es of language	e, propos	itional logic,	
Objective	completeness the	orem and In	terpretatio	on in a th	eory. Th	ne course give	es the stu	ident a good	
	mathematical ma	nathematical maturity and enables to build mathematical thinking and skill.							
0		After going through this course the students will be able to							
Course	After going	g through thi	s course t	ne stude	nts will	be able to			
Outcomes	• Learn the	syntax of fir	st-order lo	gic and s	semantic	s of first-orde	er languag	ges.	
	• Understar	d the propos	vitional loc	ric and b	asic theo	rems like con	nactness	theorem	
		rem and post					npaemess	, meorem,	
	 Assimilate the concept of completeness interpretations and their applications with 								
		nphasis on ap	-		-		ii applica	uons with	
	_							Hours	
		Conte	ent of Eac	h ∐nit				110015	
Init I. Sunt	ax of First-order l							18	
•		0	mulas of	longuag	o First s	and on the only		10	
	anguages, Terms of	language, Po	Jillulas Ol	Tanguag	e, riist (nder meory.			
Unit-II: Sen	nantics of First-or	der Languag	ges					18	
Structures of	f first order langua	ges, Truth in	n a structu	ıre, Mod	el of a t	heory, Embed	ddings		
and isomorp	hism.								
Unit-III: Pr	opositional Logics							18	
Syntax of pr	opositional logic, S	Semantics of	propositio	onal logio	c, Comp	actness theore	em for		
propositional	l logic, Proof in pro	opositional lo	ogic, Meta	theorem	in prop	ositional logic	c, Post		
tautology the					- 1	C C			
0.									

18
18

References:

- 1. Elliott Mendelson (2015). Introduction to Mathematical Logic (6th edition). Chapman & Hall/CRC, (Textbook).
- Shashi Mohan Srivastava (2013). A Course on Mathematical Logic (2nd edition). Springer, (Textbook).
- 3. Richard E. Hodel (2013). An Introduction to Mathematical Logic. Dover Publications.
- **4.** Yu I. Manin (2010). A Course in Mathematical Logic for Mathematicians (2nd edition). Springer.

Course	Course Name: Integral Transforms andCourse Code: SBSMAT 03 05 03 DSE 5106							DSE 5106	
No: 26	Fourier Analysis								
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	et Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Total	Hours: 90	
	(Mathematics)								
Course	The course is aimed at exposing the students to learn the Laplace transforms and Fourier								
Objective	transforms. To	equip with	the meth	ods of	finding	Laplace tra	nsform	and Fourier	
	Transforms of d	Transforms of different functions. To make them familiar with the methods of solving							
	differential equations, partial differential equations, IVP and BVP using Laplace transforms								
	and Fourier trans	forms.							
Course	After going	g through thi	s course fl	ne stude	nte will	he able to			
	After going	g unougn un	is course u	ie stude	IIIS WIII				
Outcomes	Know abo	out piecewise	e continuou	is function	ons, Dira	c delta functi	on, Lapl	ace	
	transform	s and its proj	perties.						
	• Solve ord	inary differe	ntial equati	ions usin	ig Laplac	e transforms.			
	• Familiaris	se with Fouri	er transfor	ms of fu	nctions b	elonging to L	$L^1(\mathbb{R})$ cla	ss, relation	
	between I	Laplace and I	Fourier tran	nsforms.					
	Explain P	arseval's ide	ntity, Plan	cherel's	theorem	and application	ons of Fe	ourier	
	transform	s to boundar	y value pro	blems.					
		-		equality,	term by	term differen	tiation a	nd	
	integratio	n of Fourier	series.						
	• Apply the	concepts of	the course	in real l	ife probl	ems.			
								Hours	
		Conte	ent of Eacl	n Unit					
Unit-I: Lap	lace Transforms							18	
Laplace tran	nsform, Linearity, I	Existence the	eorem, Lap	place tra	insforms	of derivative	es and		
integrals, Sh	nifting theorems, C	Change of sc	ale proper	ty, Lapl	ace tran	sforms of pe	eriodic		
functions, D	irac's delta functior	1.							

Unit-II: Further Properties of Laplace Transforms and Applications Differentiation and integration of transforms, Convolution theorem, Integral equations, Inverse Laplace transform, Lerch's theorem, Linearity property of inverse Laplace	
transform, Translations theorems of inverse Laplace transform, Inverse transform of	
derivatives, Applications of Laplace transform in obtaining solutions of ordinary	
differential equations and integral equations.	
Unit-III: Fourier Transforms	18
Fourier and inverse Fourier transforms, Fourier sine and cosine transforms, Inverse Fourier	
sine and cosine transforms, Linearity property, Change of scale property, Shifting property,	
Modulation theorem, Relation between Fourier and Laplace transforms.	
Unit-IV: Solution of Equations by Fourier Transforms	18
Solution of integral equation by Fourier sine and cosine transforms, Convolution theorem	
for Fourier transform, Parseval's identity for Fourier transform, Plancherel's theorem,	
Fourier transform of derivatives, Applications of infinite Fourier transforms to boundary	
value problems, Finite Fourier transform, Inversion formula for finite Fourier transforms.	
Unit-V: Fourier Series	18
Fourier cosine and sine series, Fourier series, Differentiation and integration of Fourier	
series, Absolute and uniform convergence of Fourier series, Bessel's inequality, The	
complex form of Fourier series.	
References:	
1. James Ward Brown & Ruel V. Churchill (2011). Fourier Series and Bour	ndary Value
Problems. McGraw-Hill Education, (Textbook).	
2. Walter Rudin (2017). Fourier Analysis on Groups. Dover Publications, (Textbool	k).
3. Charles K. Chui (1992). An Introduction to Wavelets. Academic Press.	
4. Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley	У,.
5. A. Zygmund (2002). Trigonometric Series (3rd edition). Cambridge University Pre	ess.

Course	Course Name: L	inear Progra	Course Code: SBSMAT 03 05 04 DSE 5106							
No: 27										
Batch:	Program:	Sem: V	L	T	Р	Credits	Conta	ct Hrs per		
2022-27	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Tota	Hours: 90		
	(Mathematics)									
Course	This course deve	elops the ide	as underly	ving the	Simplex	Method for	Linear	Programming		
Objective	Problem, as an	important b	oranch of	Operatio	ons Res	earch. The	course c	overs Linea		
	Programming wi	th applicatio	ons to Tran	nsportatio	on, Assi	gnment and	Game P	roblem. Suc		
	problems arise in	manufacturi	ng resourc	e planni	ng and f	inancial secto	ors.			
Course	After going	g through thi	is course t	he stude	nts will	be able to				
Outcomes		After going through this course the students will be able to								
	Analyze a	• Analyze and solve linear programming models of real life situations.								
	• Provide graphical solutions of linear programming problems with two variables,									
	and illustrate the concept of convex set and extreme points.									
	• Understand the theory of the simplex method.									
	• Know about the relationships between the primal and dual problems, and to									
	understand sensitivity analysis.									
	Learn abo	out the applic	ations to t	ransporta	ation, ass	signment and	two-pers	son zero-sun		
	game pro			I	,	C	1			
								Hours		
		Conte	ent of Eac	h Unit						
Unit-I: Lin	ear Programming	g Problem,	Convexi	ty and	Basic	Feasible So	lutions	18		
Formulation	, Canonical and st	andard form	s, Graphic	al metho	od; Con	vex and poly	yhedral			
sets, Hyperp	lanes, Extreme poin	nts; Basic so	lutions, Ba	sic Feas	ible Solu	utions, Reduc	ction of			
feasible sol	ution to basic fea	asible soluti	on, Corre	sponden	ce betw	veen basic f	easible			
solutions and	d extreme points.									
Unit-II: Sin	plex Method							18		
Optimality of	- criterion, Improvin	g a basic fe	asible sol	ution, U	nbounde	edness, Uniq	ue and			
alternate opt	imal solutions; Sin	plex algorit	hm and its	tableau	format;	Artificial va	riables,			
-	nethod, Big-M met									
L										

Unit-III: Duality	18					
Formulation of the dual problem, Duality theorems, Complimentary slackness theorem,						
Economic interpretation of the dual, Dual-simplex method.						
	10					
Unit-IV: Sensitivity Analysis	18					
Changes in the cost vector, right-hand side vector and the constraint matrix of the linear						
programming problem.						
Unit-V: Applications	18					
Transportation Problem: Definition and formulation, Methods of finding initial basic						
feasible solutions: Northwest-corner rule, Least- cost method, Vogel approximation						
method; Algorithm for obtaining optimal solution. Assignment Problem: Mathematical						
formulation and Hungarian method.Game Theory: Formulation and solution of two-person						
zero-sum games, Games with mixed strategies, Linear programming method for solving a						
game.						
References:						
1. G. Hadley (2002). Linear Programming. Narosa Publishing House, (Textbook).						
2. Hamdy A. Taha (2017). Operations Research: An Introduction (10th edition	on). Pearson,					
(Textbook).						
3. Frederick S. Hillier & Gerald J. Lieberman (2015). Introduction to Operation	ns Research					
(10th edition). McGraw-Hill Education.						
4. Mokhtar S. Bazaraa, John J. Jarvis & Hanif D. Sherali (2010). Linear Progr	amming and					
Network Flows (4th edition). John Wiley & Sons.						
5. Paul R. Thie & Gerard E. Keough (2014). An Introduction to Linear Programmin	ng and Game					
Theory (3rd edition). Wiley India Pvt. Ltd.						

Course	Course Name: Course Co					e: SBSMAT 0	03 05 05	DSE 5106	
No: 28	Information and	Coding Theo	ry						
Batch:	Program:	Sem: V	L	Т	P	Credits	Contac	ct Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Total	Hours: 90	
	(Mathematics)								
Course	The Mathematics	s program pr	omotes ma	athemati	cal skills	s and knowled	dge for t	heir intrinsio	
Objective	beauty, effective	eness in dev	eloping p	roficienc	cy in an	nalytical reaso	oning, a	nd utility ir	
	modeling and solving real world problems. Students who have learned to logically							ally question	
	assertions, recognize patterns, and distinguish the essential and irrelevant aspects						t aspects of		
	problems can think deeply and precisely, nurture the products of their imagination t						nagination to		
	fruition in reality, and share their ideas and insights while seeking and benefiting fr						ting from the		
	knowledge and insights of others.								
Course	After going	After going through this course the students will be able to							
Outcomes	After going	g unrough un	is course u	lle stude	iits wiii	be able to			
Outcomes	• Study simple ideal statistical communication models.								
	• Understar	nd the develo	pment of c	codes for	[.] transmi	ssion and dete	ection of	information	
	• Learn abo	out the input a	and output	of a sign	nal via tr	ansmission cl	hannel.		
	• Study det	ection and co	prrection of	f errors c	luring tr	ansmission.			
	• Represent a linear code by matrices - encoding and decoding.								
								Hours	
		Conte	ent of Eacl	n Unit					
Unit-I: Con	cepts of Informati	on Theory						18	
Communicat	tion processes, A n	nodel of com	municatio	n system	n, A qua	ntitative meas	sure of		
information,	Binary unit of info	rmation, A m	neasure of	uncertai	nty, H fu	inction as a m	easure		
of uncertaint	ty, Sources and bir	nary sources,	Measure	of infor	mation f	for two-dimer	nsional		
discrete finite	e probability schem	nes.							
Unit-II: Ent	ropy Function							18	
A sketch o	of communication	network, E	Intropy, B	asic rel	ationshi	p among di	fferent		

entropies, A measure of mutual information, Interpretation of Shannon's fundamental	
inequalities; Redundancy, efficiency, and channel capacity; Binary symmetric channel,	
Binary erasure channel, Uniqueness of the entropy function, Joint entropy and conditional	
entropy, Relative entropy and mutual information, Chain rules for entropy, Conditional	
relative entropy and conditional mutual information, Jensen's inequality and its	
characterizations, The log sum inequality and its applications.	
	10
Unit-III: Concepts of Coding	18
Block codes, Hamming distance, Maximum likelihood decoding, Levels of error handling,	
Error correction, Error detection, Erasure correction, Construction of finite fields, Linear	
codes, Matrix representation of linear codes, Hamming codes.	
Unit-IV: Bounds of Codes	18
Orthogonality relation, Encoding and decoding of linear codes, The singleton bound and	
maximum distance separable codes, The sphere-packing bound and perfect codes, The	
Gilbert-Varshamov bound, MacWilliams' identities.	
Unit-V: Cyclic Codes	18
Definition and examples of cyclic codes, Generator polynomial and check polynomial,	
Generator matrix and check matrix, Bose-Chaudhuri-Hocquenghem (BCH) code as a	
cyclic code.	
References:	
1. Robert B. Ash, (2014). Information Theory. Dover Publications, (Textbook).	
2. Thomas M. Cover & Joy A. Thomas (2013). Elements of Information Theory ((2nd edition).
Wiley India Pvt. Ltd, (Textbook).	
3. Joseph A. Gallian (2017). Contemporary Abstract Algebra (9th edition), Cengage	Э.
4. Fazlollah M. Reza, (2003). An Introduction to Information Theory. Dover Public	ations.
5. Ron M. Roth (2007). Introduction to Coding Theory. Cambridge University Pres	s.

 Claude E. Shannon & Warren Weaver (1969). The Mathematical Theory of Communication. The University of Illinios Press.

Course	Course Name: Graph Theory Course Code: SBSMAT 03 05 06 DSE 5							DSE 5106		
No: 29										
Batch:	Program:	Sem: V	L	Т	Р	Credits	Contac	t Hrs per		
2022-27	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Total	Hours: 90		
	(Mathematics)									
Course	The objective of	The objective of the course is to introduce students with the fundamental concepts of graph								
Objective	theory, with a sense of some its modern applications. They will be able to									
	methods in subsequent courses in the design and analysis of algorithms, computabil							omputability		
	theory, software engineering, and computer systems.									
Course	After going	After going through this course the students will be able to								
Outcomes		, unough un								
outcomes	Appreciat	e the definiti	ion and bas	sics of gr	aphs alo	ng with type	s and their	r examples.		
	• Understar	nd the definit	ion of a tre	e and lea	arn its ap	oplications to	fundame	ntal circuits.		
	• Know the	applications	of graph t	heory to	network	flows				
			0 1	•						
	• Understar	nd the notion	of planari	ty and co	oloring o	f a graph.				
	• Relate the	e graph theor	y to the rea	al-world	problem	S.				
		Conte	ent of Eacl	n Unit				Hours		
Unit-I: Path	s, Circuits and Gr	aph Isomor	phisms					18		
Definition a	nd examples of a	graph, Sub	graph, Wa	lks, Pat	hs and	circuits; Cor	nnected			
graphs, disco	onnected graphs ar	d componen	nts of a gra	aph; Eul	er and H	Hamiltonian	graphs,			
Graph isomo	orphisms, Adjacenc	y matrix and	l incidence	matrix	of a gra	ph, Directed	graphs			
and their elements	mentary properties.									
Unit-II: Tre	es and Fundamen	tal Circuits						18		
	nd properties of tree		d binary tr	ees, Cav	ley's the	eorem on a co	ounting	-		
	ng tree, Fundamenta		-		-		-			
-			*			2	-			
	Unit-III: Cut-Sets and Cut-Vertices						18			
	graph and its pr	-					ertices,			
Connectivity	and separability, N	letwork flow	s, 1- isomo	orphism	and 2- is	omorphism.				

Unit-IV: Planar Graphs	18				
Planar graph, Euler theorem for a planar graph, Various representations of a planar graph,					
Dual of a planar graph, Detection of planarity, Kuratowski's theorem.					
Unit-V: Graph Coloring	18				
Chromatic number of a graph, Chromatic partition, Chromatic polynomial, Matching and					
coverings, Four color problem.					
References:					
1. R. Balakrishnan & K. Ranganathan (2012). A Textbook of Graph Theorem	ry. Springer,				
(Textbook).					
2. Edgar G. Goodaire & Michael M. Parmenter (2018). Discrete Mathematics	with Graph				
Theory (3rd edition). Pearson, (Textbook).					
3. Narsingh Deo (2016). Graph Theory with Applications to Engineering an	nd Computer				
Science. Dover Publications.					
4. Reinhard Diestel (2017). Graph Theory (5th edition). Springer.					

5. Douglas West (2017). Introduction to Graph Theory (2nd edition). Pearson.

Course	Course Name:Course Code: SBSMAT 03 0						07 DSE 5106		
No: 30	Special Theory o	f Relativity							
Batch:	Program:	Sem: V	L	Т	P	Credits (Contact Hrs per		
2022-27	Integrated					V	Week: 06		
	BSc-MSc		5	1	0	6	Total Hours: 90		
	(Mathematics)								
Course	The course provi	The course provides a comprehensive introduction to the general theory of relativity where							
Objective	all forms of gravity can be described as a purely geometric effect where the curvature of								
	space and time follows the distribution of energy and the amount momentum the mat has. An overview is given of the classical tests of theory, and how the theory is used								
	describe black he	oles, gravitati	onal wav	es, and the	he cosm	ological evoluti	on of the universe		
	The course also provides an introduction to differential geometry, which is necessary						h is necessary to be		
	able to both formulate and apply the theory.								
Course	After going	g through this	s course t	the stude	nts will	be able to			
Outcomes		xperiment and				chanics includin	0		
	• Learn abo	out length con	traction,	time dila	tion and	Lorentz contrac	ction factor.		
	• Study 4-c	limensional N	Iinkowsk	ian space	e-time an	d its consequen	ces.		
	• Understan	nd equations of	of motion	as a part	of relati	vistic mechanic	S.		
	• Imbibe co	onnections be	tween rela	ativistic r	nechanic	es and electroma	agnetism.		
							Hours		
		Conte	nt of Eac	h Unit					
Unit-I: New	tonian Mechanics						18		
Inertial fram	nes, Speed of ligh	t and Gallile	an relativ	vity, Mic	chelson-l	Morley experin	nent,		
Lorentz-Fitz	gerold contraction	hypothesis, R	elative cl	naracter c	of space	and time, Postu	lates		
of special t	heory of relativity	y, Lorentz tr	ansforma	tion equ	ations a	and its geomet	rical		

interpretation, Group properties of Lorentz transformations.

Unit-II: Relativistic Kinematics	18
Composition of parallel velocities, Length contraction, Time dilation, Transformation	
equations for components of velocity and acceleration of a particle and Lorentz contraction	
factor.	
Unit-III: Geometrical representation of space-time	18
Four dimensional Minkowskian space-time of special relativity, Time-like, light-like and	
space-like intervals, Null cone, Proper time, World line of a particle, Four vectors and	
tensors in Minkowiskian space-time.	
Unit-IV: Relativistic Mechanics	18
Variation of mass with velocity. Equivalence of mass and energy. Transformation	
equations for mass momentum and energy. Energy-momentum four vector. Relativistic	
force and Transformation equations for its components. Relativistic equations of motion of	
a particle.	
Unit-V: Electromagnetism	18
Transformation equations for the densities of electric charge and current. Transformation	
equations for electric and magnetic field strengths. The Field of a Uniformly Moving Point	
charge. Forces and fields near a current carrying wire. Forces between moving charges.	
The invariance of Maxwell's equations.	
References:	
1. James L. Anderson (1973). Principles of Relativity Physics. Academic Press, (Te	extbook).
2. Robert Resnick (2007). Introduction to Special Relativity. Wiley, (Textbook).	
3. Peter Gabriel Bergmann (1976). Introduction to the Theory of Relativity. Dover I	Publications.
4. C. Moller (1972). The Theory of Relativity (2nd edition). Oxford University Pres	s.
5. Wolfgang Rindler (1977). Essential Relativity: Special, General, and Cosmologic	cal. Springer-
Verlag.	

6. V. A. Ugarov (1979). Special Theory of Relativity. Mir Publishers, Moscow.

SEMESTER – VI

				Maximum Ma				
Course/Paper Code	Course/Paper Title	Contact Hrs/week	End- Term Exam	Internal Assessment	Lab	Total Marks		
$\mathbf{D}\mathbf{D}\mathbf{S}\mathbf{W}\mathbf{A}\mathbf{I}$	Complex Analysis	6	105	45	-	150		
SBSMAT 03 06 02 C 4046	Numerical Analysis	4	70	30	-	100		
SBSMAT 03 06 02 C 4046	Numerical Analysis (Lab)	4			50	50		
DSE3		6	105	45	-	150		
DSE4		6	105	45	-	150		
	Total marks	of Semester-	VI		1	600		

Course	Course Name: Complex AnalysisCourse Code: SBSMAT 03 06 01 C 51									
No: 31										
Batch:	Program:	Sem: VI	L	T	P	Credits	Contac	t Hrs per		
2022-27	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Total	Hours: 90		
	(Mathematics)									
Course	To providing th	e basic kno	wledge a	nd to fi	nds basi	c ideas of	analysis f	for complex		
Objective	functions in com	plex variable	es with vi	sualizati	on throu	gh relevant j	practical's	s. Particula		
	emphasis has bee	en laid on Ca	uchy's the	orems ar	nd series	expansions.				
Course	After going	After going through this course the students will be able to								
Outcomes		complex n plane on the l		-	of \mathbb{R}^2	and stereog	graphic p	rojection of		
	• Understand the significance of differentiability and analyticity of complex functions leading to the Cauchy-Riemann equations.									
	• Learn the role of Cauchy-Goursat theorem and Cauchy integral formula in evaluation of contour integrals.									
	• Apply Liouville's theorem in fundamental theorem of algebra.									
	• Understand the convergence, term by term integration and differentiation of power series.									
		Conte	ent of Eac	h Unit				Hours		
Unit-I: Com	plex Plane and fu	nctions.						18		
Complex nu	mbers and their rep	presentation,	algebra of	f comple	x numbe	ers; Complex	plane,			
Open set, D	omain and region	in complex	plane; Ste	ereograpl	nic proje	ction and R	iemann			
sphere; Com	plex functions and	their limits	including	limit at	infinity;	Continuity,	Linear			
fractional tra	nsformations and th	heir geometri	ical proper	rties.						
Unit-II: Ana	alytic Functions ar	nd Cauchy-F	Riemann I	Equatior	ıs			18		
Differentiabi	lity of a complex	valued fun	ction, Cau	uchy-Rie	mann eo	quations, Ha	rmonic			
functions, no	ecessary and suffi	cient conditi	ions for c	lifferenti	ability,	Analytic fur	nctions;			
Analyticity a	and zeros of expone	ential, trigon	ometric ar	nd logari	thmic fu	nctions; Brai	nch cut			
and branch o	f multi-valued func	ctions.		-						

Unit-III: Cauchy's Theorems and Fundamental Theorem of Algebra	18				
Line integral, Path independence, Complex integration, Green's theorem, Anti-derivative					
theorem, Cauchy-Goursat theorem, Cauchy integral formula, Cauchy's inequality,					
Derivative of analytic function, Liouville's theorem, Fundamental theorem of algebra,					
Maximum modulus theorem and its consequences.					
Unit-IV: Power Series	18				
Sequences, series and their convergence, Taylor series and Laurent series of analytic					
functions, Power series, Radius of convergence, Integration and differentiation of power					
series, Absolute and uniform convergence of power series.					
Unit-V: Singularities and Contour Integration	18				
Meromorphic functions, Zeros and poles of meromorphic functions, Nature of					
singularities, Picard's theorem, Residues, Cauchy's residue theorem, Argument principle,					
Rouche's theor- em, Jordan's lemma, Evaluation of proper and improper integrals.					
References:					
1. James Ward Brown & Ruel V. Churchill (2009). Complex Variables and Applica	tions				
(9th edition). McGraw-Hill Education, (Textbook).					
2. John B. Conway (1973). Functions of One Complex Variable. Springer-Verlag, (Textbook).				
3. Lars V. Ahlfors (2017). Complex Analysis (3rd edition). McGraw-Hill Education	1.				
4. Joseph Bak & Donald J. Newman (2010). Complex Analysis (3rd edition). Spring	ger.				
5. E.T. Copson (1970). Introduction to Theory of Functions of Complex Varia	able. Oxford				
University Press.					
6. Theodore W. Gamelin (2001). Complex Analysis. Springer-Verlag.					
7. George Polya & Gordon Latta (1974). Complex Variables. Wiley.					
8. H. A. Priestley (2003). Introduction to Complex Analysis. Oxford University Pre	ss.				
9. E. C. Titchmarsh (1976). Theory of Functions (2nd edition). Oxford University P	ress.				

Course	Course Name: Numerical AnalysisCourse Code: SBSMAT 03 06 02 C 4046							
No: 32								
Batch:	Program:	Sem:VI	L	Т	Р	Credits	Contac	t Hrs per
2022-27	Integrated						Week:	08
	BSc-MSc		4	0	4	6	Total	Hours: 120
	(Mathematics)							
Course	The rapid grow	th of scie	nce and	technol	ogy durin	g last few d	lecades	has made a
Objective	tremendous chan	ge in the n	ature of	various m	athematic	al problems. I	It is very	difficult and
	almost impossibl	almost impossible to get analytical solutions in case of many of these problems. These						
	shortcomings of analytical solutions lead us to various numerical techniques developed for							
	different types of	of mathema	atical pr	oblems s	eem to be	e an excellen	t option.	The course
	objective is to a	cquaint the	e studen	ts with a	wide ran	ge of numerio	cal meth	ods to solve
	algebraic and tran	nscendenta	l equatio	ons, linear	system of	f equations, in	terpolation	on and curve
	fitting problems,	numerical	integratio	on, initial	and bound	dary value pro	blems, et	с.
Course	After going	through t	his cour	se the stu	dents will	he able to		
Outcomes	Anter going	, unough t		se the stu	dents will			
Outcomes	Obtain nu	merical sol	lutions o	f algebrai	c and trans	scendental equ	ations.	
	• Find num the solution		ions of s	ystem of	linear equa	ations and che	ck the ac	curacy of
	• Learn abo	out various	interpola	ating and o	extrapolati	ng methods.		
	• Solve init methods.	ial and bou	ndary va	llue probl	ems in dif	ferential equat	ions usin	g numerical
	Apply var	ious nume	rical met	hods in re	eal life pro	blems.		
	1	Con	tent of I	Each Unit	t			Hours
Unit-I: Num	erical Methods fo	r Solving A	Algebrai	c and Tr	anscender	ntal Equation	S	24
Round-off er	ror and computer	arithmetic,	Local a	nd global	truncation	n errors, Algo	orithms	
and converge	ence; Bisection me	thod, False	e position	n method,	Fixed po	int iteration m	nethod,	
Newton's me	thod and secant me	thod for so	olving eq	uations.				
Unit-II: Nun	nerical Methods fo	or Solving	Linear	Systems				24
Partial and se	caled partial pivot	ing, Lower	and up	per triang	ular (LU)	decompositio	on of a	

matrix and its applications, Thomas method for tridiagonal systems; Gauss-Jacobi, Gauss-	
Seidel and successive over-relaxation (SOR) methods.	
Unit-III: Interpolation	24
Lagrange and Newton interpolations, Piecewise linear interpolation, Cubic spline	
interpolation, Finite difference operators, Gregory-Newton forward and backward	
difference interpolations.	
Unit-IV: Numerical Differentiation and Integration	24
First order and higher order approximation for first derivative, Approximation for second	
derivative; Numerical integration: Trapezoidal rule, Simpson's rules and error analysis,	
Bulirsch-Stoer extrapolation methods, Richardson extrapolation.	
Unit-V: Initial and Boundary Value Problems of Differential Equations	24
Euler's method, Runge-Kutta methods, Higher order one step method, Multi-step methods;	
Finite difference method, Shooting method, Real life examples: Google search engine, 1D	
simulations, Weather forecasting.	
Deferences	

References:

- R. K. Gupta, Numerical methods: Fundamental and Applications, 1st Edition, Cambridge University Press, (Textbook).
- 2. M. K. Jain, S. R. K. Iyengar & R. K. Jain (2012). Numerical Methods for Scientific and Engineering Computation (6th edition). New Age International Publishers, (Textbook).
- 3. Brian Bradie (2006), A Friendly Introduction to Numerical Analysis. Pearson.
- 4. C. F. Gerald & P. O. Wheatley (2008). Applied Numerical Analysis (7th edition), Pearson Education, India.
- 5. F. B. Hildebrand (2013). Introduction to Numerical Analysis: (2nd edition). Dover Publications.
- Robert J. Schilling & Sandra L. Harris (1999). Applied Numerical Methods for Engineers Using MATLAB and C. Thomson-Brooks/Cole.

Course	Course Name: Discrete MathematicsCourse Code: SBSMAT 03 06							DSE 5106	
No: 33									
Batch:	Program:	Sem: VI	L	T	Р	Credits (Contact	Hrs per	
2022-27	Integrated					V	Week:	06	
	BSc-MSc		5	1	0	6	Total l	Hours: 90	
	(Mathematics)								
Course	This course will	discuss fun	damental	concept	s and to	ols in discrete	mather	natics witl	
Objective	emphasis on the	ir applicatio	ns to com	puter sc	cience. 7	Topics include	logic a	nd Booleau	
	circuits, sets, fu	nctions, rela	tions, dete	rministi	c algorit	thms and rando	omized	algorithms	
	analysis techniqu	es based on a	counting m	ethods a	and recur	rence relations,	, trees ar	nd graphs.	
~		.1 1.1	.1			1 11 .			
Course	After going	g through thi	s course th	he stude	nts will	be able to			
Outcomes	• Learn about partially ordered sets, lattices and their types.								
	• Understand Boolean algebra and Boolean functions, logic gates, switching circuits and their applications.								
	• Solve rea	l-life problen	ns using fir	nite-state	e and Tu	ring machines.			
	Assimilat	e various gra	ph theoreti	ic conce	pts and f	amiliarize with	their ap	plications.	
								Hours	
		Conte	ent of Each	n Unit					
Unit-I: Part	tially Ordered Sets	5						18	
Definitions,	examples and ba	sic properti	es of par	tially of	rdered s	sets (poset), C	Order		
isomorphisn	n, Hasse diagrams,	Dual of a p	oset, Duali	ity princ	iple, Ma	aximal and min	imal		
-	n, Hasse diagrams, east upper bound an	-		• •	-				
-	-	-		• •	-				
elements, Le	east upper bound an	-		• •	-			18	
elements, Le posets. Unit-II: Lat	east upper bound an	d greatest up	per bound	, Buildin	ng new p	oset, Maps betv		18	

Complemented, relatively complemented and sectionally complemented lattices.

Unit-III: Boolean Algebras and Switching Circuits	18					
	10					
Boolean algebras, De Morgan's laws, Boolean homomorphism, Representation theorem;						
Boolean polynomials, Boolean polynomial functions, Disjunctive and conjunctive normal						
forms, Minimal forms of Boolean polynomials, Quine-McCluskey method, Karnaugh						
diagrams, Switching circuits and applications.						
Unit-IV: Finite-State and Turing Machines						
Finite-state machines with outputs, and with no output; Deterministic and nodeterministic						
finite-state automaton; Turing machines: Definition, examples, and computations.						
Unit-V: Basic of Graphs						
Definition, examples and basic properties of graphs, Königsberg bridge problem;						
Subgraphs, Pseudographs, Complete graphs, Bipartite graphs, Isomorphism of graphs,						
Paths and circuits, Eulerian circuits, Hamiltonian cycles, Adjacency matrix, Weighted						
graph, Travelling- salesman problem, Shortest path and Dijkstra's algorithm.						
References:						
1. Kenneth H. Rosen (2012). Discrete Mathematics and its Applications: With C	ombinatorics					
and Graph Theory (7th edition). McGraw-Hill, (Textbook).						
2. Edgar G. Goodaire & Michael M. Parmenter (2018). Discrete Mathematics	with Graph					
Theory (3rd edition). Pearson Education, (Textbook).						
3. B. A. Davey & H. A. Priestley (2002). Introduction to Lattices and Order (2	and edition).					
Cambridge University Press.						
4. Rudolf Lidl & Günter Pilz (1998). Applied Abstract Algebra (2nd edition). Spring	ger.					
5. C. L. Liu (1985). Elements of Discrete Mathematics (2nd edition). McGraw-Hill.						
5. C. E. Eld (1965). Elements of Discrete Mathematics (2nd edition). Meenaw Tim.						

	eourse rainer (avenets and	Applicatio			ue: SBSMAT	03 06 02 DSE 5	5106		
No: 34										
Batch:	Program:	Sem: VI	L	T	Р	Credits	Contact Hrs p	er		
2022-27	Integrated						Week: 06			
	BSc-MSc		5	1	0	6	Total Hours:	: 90		
	(Mathematics)									
Course	Most students to	day have ha	d experien	ice dowr	loading	compressed i	image or sound	files		
Objective	from the web, or	using softw	are such a	is Adobe	e Photos	hop to enhance	ce a photo they	have		
	taken, or watchi	ng a crime	solving d	rama wł	nere the	fingerprints	of a perpetrato	or are		
	compared agains	t those store	d in AFIS	. This	course u	ses mathemat	tical theory, rec	ently		
	developed applie	cations, and	computat	tion to	introduc	e students to	the basics of	f the		
	enhancement an	d compress	ion of di	igital in	nage an	d sound file	es. Students	from		
	mathematics, phy	vsics, and con	mputer scie	ence mig	ht benef	it from such a	course.			
Course	After going	g through thi	is course th	he stude	nts will	be able to				
Outcomes	• Know basic concepts of signals and systems.									
	• Understar	nd the concept	pt of Haar s	spaces.						
	• Learn Fou	• Learn Fourier transform and wavelet transform of digital signals.								
	• Learn applications of wavelets to the real-world problems.									
	• Apply wavelets in signal processing and image processing.									
							Hou	irs		
		Conte	ent of Eacl	n Unit						
Unit-I: Sign	als and Systems						18	;		
Basic concep	pts of signals and	systems, Fre	equency sp	ectrum o	of signal	ls; Classificati	ion of			
signals: Disc	crete time signals	and continu	ious time	signals,	periodio	c and non-pe	eriodic			
signals; Clas	ssification of syste	ms: Linear,	nonlinear,	time-va	riant, tii	me-invariant,	stable			
and unstable	systems.									

Orthogonal functions, Orthonormal functions, Function spaces, Orthogonal basis functions, Haar scaling function, Haar spaces: Haar space *V*O, general Haar space *V*j; Haar wavelet,

Haar wavelet spaces: Haar wavelet space WO, general Haar wavelet space Wj;	
Decomposition and reconstruction, Time-frequency analysis, Orthogonal and orthonormal	
bases.	
	10
Unit–III: Fourier Transforms and Wavelets	18
Discrete Fourier transform of a digital signal, Complex form of a Fourier series, Inverse	
discrete Fourier transform, Window Fourier transform, Short time Fourier transform,	
Admissibility condition for a wavelet, Classes of wavelets: Haar, Morlet, Maxican hat,	
Meyer and Daubechies wavelets; Wavelets with compact support.	
Unit–IV: Discrete Wavelet Transforms	18
Stationary and non-stationary signals, Haar transform, 1-level Haar transform, Multi-level	
Haar transform, Conservation and compaction of energy, Multiresolution analysis,	
Decomposition and reconstruction of signals using discrete wavelet transform (DWT).	
Unit–V: Applications	18
Wavelet series expansion using Haar and other wavelets, Applications in signal compression, Analysis and classification of audio signals using DWT, Signal denoising: Image and ECG signals.	
References:	
1. Charles K. Chui (1992). An Introduction to Wavelets. Academic Press, (Textboo	ok).
2. David K. Ruch & Patrick J. Van Fleet (2009), Wavelet Theory: An Elementa	ary Approach
with Applications. John Wiley & Sons, (Textbook).	
3. Ingrid Daubechies (1999). Ten Lectures on Wavelets. SIAM	
4. Michael W. Frazier (1999). An Introduction to Wavelets Through Linear Algeb	ora. Springer-
Verlag.	
5. Stéphane Mallat (2008). A Wavelet Tour of Signal Processing (3rd edition). Acad	demic Press.
6. M.J. Roberts (2004). Signals and Systems: Analysis Using Transform Methods a	nd
MATLAB. McGraw-Hill Education.	
7. James S. Walker (2008). A Primer on Wavelets and Their Scientific Appli	ications (2nd
edition). Chapman & Hall/CRC, Taylor & Francis.	

Course	Course Name: Number TheoryCourse Code: SBSMAT 03 06 03 DSE 5106								
No: 35									
Batch:	Program:	Sem: VI	L	T	Р	Credits	Conta	ct Hrs per	
2022-27	Integrated						Week:	06	
	BSc-MSc		5	1	0	6	Tota	l Hours: 90	
	(Mathematics)								
Course	This course is ai	med at unde	rgraduate	mathema	atics mag	jors. It is a f	ïrst cour	se in number	
Objective	theory, and is int	ended to intr	oduce stuc	lents to a	number	theoretic pro	blems an	d to different	
	areas of number	theory. Nun	ber theory	y has a v	very lon	g history con	npared t	o some other	
	areas of mather	natics, and	has many	applic	ations,	especially to	o coding	theory and	
	cryptography.								
Course	After going	After going through this course the students will be able to							
Outcomes		, unougn un		lie stade					
	 consequences. Learn about number theoretic functions, modular arithmetic and their appl Familiarize with modular arithmetic and find primitive roots of p composite numbers. Know about open problems in number theory, namely, the Goldbach conjutwin-prime conjecture. Apply public crypto systems, in particular, RSA. 						f prime and onjecture and		
		~						Hours	
			ent of Eacl					10	
	ribution of Primes	•	U			1 ~		18	
-	hantine equation, P		-						
•	win-prime conject	-		0					
-	gruence relation an			congrue	ence and	Chinese ren	nainder		
theorem, Fer	mat's little theorem	, Wilson's th	eorem.						
Unit-II: Nu	mber Theoretic Fu	nctions						18	
Number theo	pretic functions for	sum and nu	mber of di	ivisors, I	Multiplic	cative function	on, The		

Möbius inversion formula, Greatest integer function, Euler's phi-function and properties,	
Euler's theorem.	
Unit-III: Primitive Roots	18
Order of an integer modulo n, Primitive roots for primes, Composite numbers having	10
primitive roots; Definition of quadratic residue of an odd prime, Euler's criterion.	
Unit-IV: Quadratic Reciprocity Law	18
The Legendre symbol and its properties, Quadratic reciprocity, Quadratic congruencies	
with composite moduli.	
Unit-V: Applications	18
Public key encryption, RSA encryption and decryption with applications in security	
systems.	
References:	1
1. David M. Burton (2007). Elementary Number Theory (7th edition).	McGraw-Hill,
(Textbook).	
2. Neville Robbins (2007). Beginning Number Theory (2nd edition). Narosa, (Text	book).
3. Gareth A. Jones & J. Mary Jones (2005). Elementary Number Theory. Springer.	

- 4. I.Niven (2012). An Introduction to the Theory of Numbers (5th edition). John Wiley & Sons.
- Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-Verlag.

Course	Course Name: Mathematical Finance Course Code: SBSMAT 03 06 04 DSE 5106							DSE 5106
No: 36								
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Contac	ct Hrs per
2022-27	Integrated						Week:	06
	BSc-MSc		5	1	0	6	Tota	Hours: 90
	(Mathematics)							
Course	This course prov	ides an intro	oduction to	the bas	sic math	ematical con	cepts an	d techniques
Objective	used in finance a	and business	, highlight	ing the i	inter-rela	ationships of	the mat	hematics and
	developing probl	em solving	skills with	n a parti	cular en	nphasis on fi	inancial	and business
	applications							
<u> </u>		.1 1.44				1 11 .		
Course Outcomes	After going	g through thi	s course th	he stude:	nts will	be able to		
	 Understand financial markets and derivatives including options and futures. Appreciate pricing and hedging of options, interest rate swaps and no-arbitrage pricing concepts. Learn stochastic analysis, Ito's formula, Ito integral and the Black–Scholes model. Study and use Hedging parameters, trading strategies and currency swaps. 							
Unit-I: Basic	c Theory of Intere	st and Fixed	l-Income S	Securitie	es			18
Principal and	interest: simple, c	ompound an	d continuo	ous; Pres	ent and	future value o	of cash	
flow streams	; Net present value	e, Internal ra	ates of retu	urn and	their co	mparison; Inf	flation,	
Annuities; Bo	onds, Bond prices a	nd yields, M	lacaulay du	aration a	nd modi	fied duration.		
Unit-II: Teri	m Structure of Int	terest Rates,	Bonds an	d Deriv	atives			18
Spot rates, f	forward rates and	explanation	s of term	structur	re; Runi	ning present	value,	
Floating- rate	e bonds, Immuniz	ation, Conve	exity; Puta	ble and	callable	bonds; Exc	hange-	
traded marke	ets and over-the-c	counter marl	kets; Deriv	vatives:	Forward	d contracts,	Future	
contracts, Op	tions, Types of trac	lers, Hedging	g, Speculat	tion, Arb	itrage.			

Unit-III: Mechanics of Options Markets	18						
No-arbitrage principle, Short selling, Forward price for an investment asset; Types of							
options: Call and put options, Option positions, Underlying assets, Factors affecting option							
prices, Upper and lower bounds for option prices, Put-call parity, Effect of dividends.							
Unit-IV: Stochastic Analysis of Stock Prices and Black-Scholes Model	18						
Binomial option pricing model, Risk neutral valuation: European and American options on							
assets following binomial tree model; Lognormal property of stock prices, Distribution of							
rate of return, Expected return, Volatility, Estimating volatility from historical data,							
Extension of risk-neutral valuation to assets following geometric Brownian motion, Black-							
Scholes formula for European options.							
Unit-V: Hedging Parameters, Trading Strategies and Swaps	18						
Hedging parameters: Delta, gamma, theta, rho and vega; Trading strategies involving							
options, Swaps, Mechanics of interest rate swaps, Comparative advantage argument,							
Valuation of interest rate swaps, Currency swaps, Valuation of currency swaps.							
References:							
1. John C. Hull & Sankarshan Basu (2018). Options, Futures and Other Deriv	vatives (10th						
edition). Pearson Education, (Textbook).							
2. David G. Luenberger (2013). Investment Science (2nd edition). Oxford Universit	y Press.						
3. Sheldon M. Ross (2011). An Elementary Introduction to Mathematical Finance							
(3rd edition). Cambridge University Press.							

Course	Course Name: CryptographyCourse Code: SBSMAT 03 06 05 DSE 51							5 DSE 5106		
No: 37										
Batch:	Program:	Sem: VI	L	Т	Р	Credits	Conta	ct Hrs per		
2022-27	Integrated						Week:	06		
	BSc-MSc		5	1	0	6	Tota	Hours: 90		
	(Mathematics)									
Course	Cryptography is	the practice	and study	of tech	niques fo	or securing c	ommunic	cations in th		
Objective	presence of third	parties. This	s course ai	ms to in	npart kno	owledge and	protect in	nformation i		
	order to ensure it	ts integrity, o	confidentia	lity, aut	henticity	, and non-rep	oudiation	. This cours		
	gives with a ba	sic understa	inding of	cryptogi	raphic c	oncepts and	how to	apply then		
	implement secure	e protocols, l	key manag	ement c	oncepts,	key administ	tration an	nd validation		
	and Public Key I	nfrastructure	•							
Course	After going	through the	is course t	ne stude	nte will	be able to				
Outcomes	After going through this course the students will be able to									
Outcomes	• Understand the difference between classical and modern cryptography.									
	• Learn the fundamentals of cryptography, including Data and Advanced Encryption									
	Standards (DES & AES) and RSA.									
	• Encrypt and decrypt messages using block ciphers, sign and verify messages using well-known signature generation and verification algorithms.									
	• Know about the aspects of number theory which are relevant to cryptography.									
								Hours		
		Conte	ent of Eacl	n Unit						
Unit I: Intro	oduction to Crypto	ography and	l Classical	Crypto	graphy			18		
Cryptosyster	ns and basic cry	ptographic	tools: Sec	ret-key	cryptos	ystems, Pub	lic-key			
cryptosysten	ns, Block and str	eam cipher	s, Hybrid	cryptog	graphy,	Message in	tegrity:			
Message au	thentication codes,	Signature	schemes,	Nonrepu	udiation,	Certificates	, Hash			
functions, C	Cryptographic proto	ocols, Securi	ity; Hybrid	l crypto	ography:	Message in	tegrity,			
Cryptograph	ic protocols, Secur	ity, Some si	mple crypt	osystem	ns, Shift	cipher, Subs	titution			
cipher, Affin	ne cipher, Vigenère	e cipher, Hi	ll cipher, I	Permuta	tion cipł	ner, Stream c	phers,			
Cryptanalysi	s of affine, substitu	tion, Vigenè	re, Hill and	LFSR	stream c	iphers.				

Unit-II: Cryptographic Security, Pseudo Randomness and Symmetric Key Ciphers	18
Shannon's theory, Perfect secrecy, Entropy, Spurious keys and unicity distance; Bit	
generators, Security of pseudorandom bit generators. Substitution-permutation networks,	
Data encryption standard (DES), Description and analysis of DES; Advanced encryption	
standard (AES), Description and analysis of AES; Stream ciphers, Trivium.	
	10
Unit-III: Basics of Number Theory and Public-Key Cryptography	18
Basics of number theory; Introduction to public-key cryptography, RSA cryptosystem,	
Implementing RSA; Primality testing, Legendre and Jacobi symbols, Solovay-Strassen	
algorithm, Miller-Rabin algorithm; Square roots modulo n, Factoring algorithms, Pollard	
P - 1 algorithm, Pollard rho algorithm, Dixon's random squares algorithm, Factoring	
algorithms in practice; Rabin cryptosystem and its security.	
Unit-IV: More on Public-Key Cryptography	18
Basics of finite fields; ElGamal cryptosystem, Algorithms for the discrete logarithm	
problem, Shanks' algorithm, Pollard rho discrete logarithm algorithm, Pohlig-Hellman	
algorithm; Discrete logarithm algorithms in practice, Security of ElGamal systems, Bit	
security of discrete logarithms.	
Unit-V: Hash Functions and Signature Schemes	18
Hash functions and data integrity, SHA-3; RSA signature scheme, Security requirements	
for signature schemes, Signatures and Hash functions, ElGamal signature scheme, Security	
of ElGamal signature scheme, Certificates.	
of ElGamal signature scheme, Certificates. References:	

- Jeffrey Hoffstein, Jill Pipher & Joseph H. Silverman (2014). An Introduction to Mathematical Cryptography (2nd edition). Springer, (Textbook).
- Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer-Verlag, (Textbook).
- 3. Christof Paar & Jan Pelzl (2014). Understanding Cryptography. Springer.
- 4. Simon Rubinstein-Salzedo (2018). Cryptography. Springer.
- 5. Douglas R. Stinson & Maura B. Paterson (2019). Cryptography Theory and Practice (4th edition). Chapman & Hall/CRC Press, Taylor & Francis.

Course	Course Name: Advanced Mechanics Course Code: SBSMAT 03 06 06 DSE 5106							DSE 5106			
No: 38											
Batch:	Program:	Sem: VI	L	T	Р	Credits	Conta	ct Hrs per			
2022-27	Integrated						Week:	06			
	BSc-MSc		5	1	0	6	Tota	Hours: 90			
	(Mathematics)										
Course	In this course, st	udents will b	be imparte	d knowl	edge to	enable them to	o under	stand several			
Objective	concepts of Ad	vanced Mec	hanics su	ch as C	Central a	axis, Wrench,	Impul	sive motion,			
	Streamlines, path	lines, Mome	nts and pro	oducts of	f inertia.						
Course	After going through this course the students will be able to										
Outcomes		s inough in		ne stude	11t3 will	be dole to					
Outcomes	• Understar	nd the reduct	ion of forc	e system	in three	dimensions to	a resul	tant force			
	0	acting at a base point and a resultant couple, which is independent of the choice of									
	base of re	duction.									
	• Learn about a null point, a null line, and a null plane with respect to a system of										
	forces act	forces acting on a rigid body together with the idea of central axis.									
		• Know the inertia constants for a rigid body and the equation of momental ellipsoid									
	-			al axes and principal moments of inertia and to							
	derive Euler's equations of motion of a rigid body, moving about a point which is kept fixed.										
	• Study the	kinematics a	and kinetic	s of fluic	d motion	s to understand	the eq	uation of			
	continuity in Cartesian, cylindrical polar and spherical polar coordinates which are										
	used to derive Euler's equations and Bernoulli's equation.										
	• Deal with two-dimensional fluid motion using the complex potential and also to										
	understand the concepts of sources, sinks, doublets and the image systems of these with regard to a line and a circle.										
	with legal										
		~						Hours			
		Conte	ent of Eac	h Unit							
Unit-I: Stati	-		_					18			
	ee dimensions, Red			1		•					
-	ntral axis and Wre ull points, lines and	-									
and conjugat	-	r ,,,,,,,			1010	, <u></u>					
Unit-II: Mo	tion of a Rigid Bo	dy						18			
	8	-									

Moments and products of inertia of some standard bodies, Momental ellipsoid, Principal	
axes and moments of inertia; Motion of a rigid body with a fixed point, Kinetic energy of a	
rigid body with a fixed point and angular momentum of a rigid body, Euler's equations of	
motion for a rigid body with a fixed point, Velocity and acceleration of a moving particle	
in cylindrical and spherical polar coordinates, Motion about a fixed axis, Compound	
pendulum.	
	10
Unit-III: Kinematics of Fluid Motion	18
Lagrangian and Eulerian approaches, Material and convective derivatives, Velocity of a	
fluid at a point, Equation of continuity in Cartesian, cylindrical polar and spherical polar	
coordinates, Cylindrical and spherical symmetry, Boundary surface, Streamlines and	
pathlines, Steady and unsteady flows, Velocity potential, Rotational and irrotational	
motion, Vorticity vector and vortex lines.	
Unit-IV: Kinetics of Fluid Motion	18
Euler's equations of motion in Cartesian, cylindrical polar and spherical polar coordinates;	
Bernoulli's equation, Impulsive motion.	
Unit-V: Motion in Two-Dimensions	18
Stream function, Complex potential, Basic singularities: Sources, sinks, doublets, complex	
potential due to these basic singularities; Image system of a simple source and a simple	
doublet with regard to a line and a circle, Milne-Thomson circle theorem.	
References:	
1. A. S. Ramsay (1960). A Treatise on Hydromechanics, Part-II Hydrodynamics	s. G. Bell &
Sons, (Textbook).	
2. F. Chorlton (1967). A Textbook of Fluid Dynamics. CBS Publishers, (Textbook)).
3. Michel Rieutord (2015). Fluid Dynamics An Introduction. Springer.	

4. E. A. Milne (1965). Vectorial Mechanics, Methuen & Co.Limited. London.

Course No:	Course Name: Dissertation on Any				Course Code: SBSMAT 03 06 07 DSE 5106				
39	Topic of Mathem	natics							
Batch:	Program:	Sem:VI	L	Т	Р	Credits	Contact Hrs per		
2022-27	Integrated						Week: 06		
	BSc-MSc								
	(Mathematics)		5	1	0	6	Total Hours: 90		

10. GENERIC ELECTIVE COURSES (GEC)

(Only for Other Departments)

Sr.	Course code	Course title	L	Т	Р	Credits
1.	SBSMAT 03 01 01 GE 5106	Introductory Calculus and Analysis	5	1	0	6
2.	SBSMAT 03 01 02 GE 5106	Basic Mathematics for Social Sciences	5	1	0	6
3.	SBSMAT 03 01 03 GE 5106	Probability and Statistics510				
4.	SBSMAT 03 02 01 GE 5106	Vector Calculus	5 1 (0	6
5.	SBSMAT 03 02 02 GE 5106	Mathematics for Chemists	athematics for Chemists 5 1			
6.	SBSMAT 03 02 03 GE 5106	Numerical Methods	5	1	0	6
7.	SBSMAT 03 03 01 GE 5106	Linear Algebra	5	1	0	6
8.	SBSMAT 03 03 02 GE 5106	Differential Equations	5	1	0	6
9.	SBSMAT 03 03 03 GE 5106	Complex Analysis	5	1	0	6
10.	SBSMAT 03 04 01 GE 5106	Introduction to Graph Theory	5	1	0	6
11.	SBSMAT 03 04 02 GE 5106	Optimization Techniques 5 1		0	6	
12.	SBSMAT 03 04 03 GE 4046	Mathematical Modelling	5	1	0	6

Note: Any course from MOOCs for PG students on SWAYAM can also be taken as DSEC or GEC course on recommendations of the department.

Course No:	Course Name:				Course Code: SBSMAT 03 01 01 GE 5106						
01	Introductory Cale	culus and Ana	lysis								
Batch:	Program: UG	Sem: I	L	Т	P	Credits	Contact	Hrs per			
							Week: 0	6			
			5	1	0	6	Total H	ours: 90			
Course	The objective of	f the course	is to intr	oduce bas	ic struct	ures of math	ematics lil	ke limit,			
Objective	continuity, differ	entiability into	egration,	sequence,	and seri	es. The cours	se gives the	e student			
	a good mathemat	ical maturity	and enabl	es to build	mathem	atical thinkin	g and skill.				
Course	After go	ing through t	his cours	e the stude	ents will	be able to					
Outcomes	Assimilat	e the notions	of limit	of a seque	ence and	convergence	of a serie	s of real			
	numbers.										
	• Calculate the limit and examine the continuity of a function at a point.										
	• Understand the consequences of various mean value theorems for differentiable										
	functions	functions.									
	• Understar	nd the integrat	tion and th	neir applica	ations.						
	I							Hours			
		Con	tent of E	ach Unit							
Unit I: Succe	essive differentiati	on and Leibni	tz theore	m, limits,	continui	ty, and differe	entiability,	18			
Mean value t	heorem, Taylors Tl	neorem, Maxi	ma and N	linima.							
Unit-II: Rier	mann integration,	Darboux the	orem, Fu	ndamenta	l theore	m of integral	Calculus,	18			
Improper inte	egrals, Beta functio	on, Gamma fu	inctions a	nd related	definite	integrals. Su	rface area				
and Volume.											
Unit-III: Cor	nvergence of seque	ences and seri	es, powei	r series.				18			
	tial differentiatior axima and minima,			d chain ru	le. Dire	ctional deriva	atives and	18			

Unit-V: Double and Triple integration, Jacobians and change of variables. Parametrization o							
curves and surfaces, vector Fields, line and surface integrals. Divergence and curl, Theorems of							
Green, Gauss, and Stokes.							
References:							
1. M. D. Weir, J. Hass and F. R. Giordano: Thomas' Calculus, 11th edition, Pearson	n, 2008						
(Textbook).							
2. T. M. Apostol: <i>Calculus, Volumes 1 and 2</i> , 2 nd edition, Wiley, 1980.							
3. J. Stewart: <i>Calculus</i> , 5 th edition, Thomson, 2003.							
4. N. Piskunov: Differential and Integral Calculus, Mir Publishers, 1969.							

5. S. Narayan: A Textbook of Vector Calculus, S. Chand, 2003.

Course	Course Name: Basic Mathematics forCourse Code: SBSMAT 03 01 02 GE 5106							GE 5106
No: 02	Social Sciences							
Batch:	Program: UG	Sem: I	L	Τ	Р	Credits	Contact Hrs per V	Veek: 06
			5	1	0	6	Total Hour	rs: 90
Course	The main objecti	ve of this c	ourse is	to en	icourag	ge students	to develop a workin	g knowledge
Objective	of the basic Math	of the basic Mathematics for social science and will present some of the ideas that form the						
	foundation of qua	antitative w	ork in	the so	cial sc	iences. In	particular, topics fro	m logarithm,
	set theory, mat	rix theory	and	calcul	lus w	ill be dis	scussed with emph	asis on the
	understanding of	concepts ar	nd the d	eveloj	pment	of intuition	1.	
Course	After going	g through t	his cou	rse th	e stud	ents will b	e able to	
Outcomes	-	ne fundame sic Matherr		-		U U	ithm and antilogarith	nm and their
	• Demonstr	ate accurat	e and ef	ficier	nt use o	of set theor	y and Venn diagram.	
	 Understand and use the terms: function, relation, series arithmetic, geometric progression, Permutations and Combinations. 							
			-				continuity and differe ptive statistics	ntiation of a
	1	Con	tent of	Each	Unit			Hours
Unit-I								18
simple appli calendar, clo	cations of logarith ck, time, work and agram, De Morgan	nm and an distance,	ntilogari mensura	thm, ation,	numer seatin	rical probl g arrangen	ties of logarithms, ems on averages, nent, sets, types of gram, relations and	
Unit-II								18
Introduction	of sequences, se	ries arithn	netic a	nd ge	eometr	ic progres	ssion, relationship	
between AM	and GM. Basic of	concepts of	permu	tation	is and	combinati	ons, permutations,	
combinations	s with standard res	sults. Introd	ducing	functi	ons,	domain	and range of a	
function,	types of funct	ions (Poly	nomial	funct	ion; R	ational fu	nction; Logarithm	
function, Ex	ponential function	; Modulus	s functi	on; C	Greates	st Integer	function, Signum	

function), Graphical representation of functions.	
Unit-III	18
Concept of limits and continuity of a function, instantaneous rates of change,	
differentiation as a process of finding derivative, derivatives of algebraic functions using	
Chain rule. Mathematically acceptable statements, connecting words/ phrases in	
Mathematical statement consolidating the understanding of "if and only if (necessary and	
sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and	
their use through variety of examples related to real life and Mathematics problems based	
on logical reasoning (coding-decoding, odd man out, blood, relation, syllogism etc).	
Unit-IV	18
Random experiment, sample space, events, mutually exclusive events. Independent and	
dependent Events, law of total probability, Bayes' Theorem.	
Unit-V	18
Data on various scales (nominal, ordinal, interval and ratio scale), data representation and	
visualization, data interpretation (dispersion, deviation, variance, skewness and kurtosis),	
percentile rank and quartile rank, correlation (Pearson and Spearman method of	
correlation), applications of descriptive statistics using real time data.	
References:	
1. Gill J. Essential Mathematics for Political and Social Research, Cambridge Unive 2016 (Textbook).	rsity Press,
2. Haeussler E., Paul R. and Wood R. Introductory Mathematical Analysis for Busin	ess,
Economics, and the Life and Social Sciences, 15th edition. Prentice-Hall, 2015.	
3. Goldstein L., Lay D., and Schneider D. Calculus and Its Applications, 14 th Edition	l.
Prentice Hall, 2014.	
4. Hagle T. Basic Math for Social Scientists: Problems and Solutions, 1996.	
5. Hagle T. Basic Math for Social Scientists: Concepts, 1996.	
6. Kleppner D. and Ramsey N. Quick Calculus. Wiley, 1995.	

Course	Course Name: Probability and Statistics Course Code:						SBSMAT 03 01 03 GI	E 5106
No: 03								
Batch:	Program: UG	Sem: I	L	Т	Р	Credits	Contact Hrs per W	eek: 06
			5	1	0	6	Total Hours:	90
Course	To provide an understanding of the basic concepts in probability theory and statistical							
Objective	analysis. Students will learn the fundamental theory of distribution of random variables, the basic theory and techniques of parameter estimation and tests of hypotheses. After taking this course, students will be able to use calculators and tables to perform simple statistical analyses for small samples and use popular statistics packages, such as SAS, SPSS, S-Plus, R or MATLAB, to perform simple and sophisticated analyses for large samples.							
Course	After going through this course the students will be able to							
Outcomes	• Understand distributions in the study of the joint behaviour of two random variables.							
	• Establish a formulation helping to predict one variable in terms of the other that is,							
	correlation and linear regression.							
	• Understand central limit theorem, which establish the remarkable fact that the							
	empirical frequencies of so many natural populations, exhibit a bell shaped curve.							
Content of Each Unit								Hours
Unit-I: Probability Functions and Moment Generating Function								18
Basic notions of probability, Conditional probability and independence, Baye's theorem;								
Random variables - Discrete and continuous, Cumulative distribution function, Probability								
mass/density functions; Transformations, Mathematical expectation, Moments, Moment								
generating function, Characteristic function.								
Unit II. University Discussion and Continuous Distributions								10
Unit-II: Univariate Discrete and Continuous Distributions								18
Discrete distributions: Uniform, Bernoulli, Binomial, Negative binomial, Geometric and								
Poisson; Continuous distributions: Uniform, Gamma, Exponential, Chi-square, Beta and								
normal; Normal approximation to the binomial distribution.								

Unit-III: Bivariate Distribution

Joint cumulative distribution function and its properties, Joint probability density function, Marginal distributions, Expectation of function of two random variables, Joint moment generating function, Conditional distributions and expectations.

Unit-IV: Correlation, Regression and Central Limit Theorem

The Correlation coefficient, Covariance, Calculation of covariance from joint moment generating function, Independent random variables, Linear regression for two variables, The method of least squares, Bivariate normal distribution, Chebyshev's theorem, Strong law of large numbers, Central limit theorem and weak law of large numbers.

Unit-V: Modeling Uncertainty

Uncertainty, Information and entropy, Uniform Priors, Polya's urn model and random graphs.

References:

- 1. Irwin Miller & Marylees Miller (2014). John E. Freund's Mathematical Statistics with Applications (8thedition). Pearson. Dorling Kindersley Pvt. Ltd. India, (**Textbook**).
- Robert V. Hogg, Joseph W. McKean & Allen T. Craig (2013). Introduction to Mathematical Statistics (7th edition), Pearson Education.
- 3. Jim Pitman (1993). Probability, Springer-Verlag.
- 4. Sheldon M. Ross (2014). Introduction to Probability Models (11th edition). Elsevier.
- M. Yaglom and I. M. Yaglom (1983). Probability and Information. D. Reidel Publishing Company. Distributed by Hindustan Publishing Corporation (India) Delhi.
- 6. V.K. Kapoor and S. C. Gupta (2018). Fundamental of Mathematical Statistics, S. Chand & Sons.

18

18

18

Course No:	Course Name: V	ector Calcu	ulus		Cours	se Code: SI	BSMAT 03 02 01 GI	E 5106		
04										
Batch:	Program: UG	Sem: II	L	Т	Р	Credits	Contact Hrs per Week: 06			
				1		6		00		
			5	1	0	6	Total Hour			
Course	_						l real variables an			
Objective	vector analysis.	Topics dis	cussed	l are: p	artial d	erivatives,	gradients, line an	nd surface		
	integrals; vector	valued fund	ctions,	diverge	ence, cu	rl and flux	of vector fields, the	e theorems		
	of Green and Sto	kes, the div	ergenc	e theore	em, and	application	S			
Course	After go	ing through	h this	course	the stud	ents will be	e able to			
Outcomes	• Find the T	Friple produ	ict of I	Products	and the	ir Applicat	ions			
	• Understan	d the conce	pt of I	Line inte	gral and	Surface inte	egral			
	• Understar	nd the conce	ept of '	Tensor						
Con	tent of Each Unit							Hours		
Unit I Vecto	rs, Scalars and Do	t Product, 7	[riple]	Product	s, Scalar	and Vecto	r Fields, Methods	18		
	and Examples,		1							
	e Integrals, Surface			-		nples, Parti	al Differentiation,	18		
Taylor Series	and Gradients, Di	vergence, L	aplaci	an and (Curl					
	ffix Notation, Kro				0			18		
-	Properties of Vect			-		_				
Applications,	, Stokes' Theorem	and Applica	ations,	More o	II Gauss	and Stoke				
	rvilinear Coordinat	,	,	U	and Cur	l in Curvili	near Coordinates,	18		
Examples in	Cylindrical and Sp	herical Coo	ordinate	es						
Unit-V:								18		
	Applications and	Review, Te	ensors	and Ap	plicatio	ns, Physica	l Applications of			
Tensors, App	lications									
References:										
1. Georg	ge B. Thomas, Mau	rice D. Wei	ir and .	Joel Ha	ss, Thon	nas Calculu	s, 13/e, Pearson			
Publishers, 20	013, (Textbook).									
2. R.K.J	ain and S.R.K.Iye	engar, Adva	anced	Engine	ering M	athematics	, 3/e, Alpha Scienc	ce		
International	Ltd., 2002.									

3. Michael Greenberg, Advanced Engineering Mathematics, 2/e, Pearson, 2018.

Course No: 05	Course Name: Mathematics for ChemistsCourse Code: SBSMAT 03 02 02 GE							
Batch:	Program: UG	Sem: II	L	T	Р	Credits	Contact H Week: 06	-
			5	Total	Total Hours:			
							9	0
Course	The main object	tive of thi	s course	is to int	roduce th	e students to t	he exciting	world of
Objective	numerical analy	sis, differ	ential eq	uations a	and statist	tics.		
Course	After con	npleting t	his cours	se, stude	nt is expe	cted to learn th	he followin	g:
Outcomes	 and their Understardifferen Analyze tregularation their sol Use the tregular their sol 	 Learn the basics of numerical analysis, to calculate the errors in approximations and their properties. Understand the basics of differential equations to solve the first order linear differential equations and second order differential equations. Analyze the singular points, power series solution of differential equation at regular and irregular singular points, Bessel's and Legendre's equations and their solutions. Use the basics tools of statistics and by using these techniques to measures central tendency, learn Gaussian and Binomial distributions. 						
Unit-I								15
Algebraic, t	ranscendental fun	ictions, aj	pproxim	ation, er	rors in a	pproximation,	absolute,	
relative and	percentage error	rs, matric	es and	their pr	operties,	some special	matrices,	
matrix alge	bra, the inverse	matrix, l	inear tr	ansform	ations, or	rthogonal mat	trices and	
orthogonal t	ransformations.							
Unit-II								15
Solution of	differential equ	ations, fi	rst-order	linear	equation	s- separable	equations,	
homogeneou	us linear equation	ons, non	-homoge	eneous	linear e	quations, sec	cond-order	
differential	equations with c	onstant c	oefficien	ts, gene	eral soluti	ion, particular	solution,	
linear equati	linear equations in chemical kinetics, harmonic oscillator and							
some other a	applications							

Unit-III	15
Singular points, power series solution of differential equation at regular and irregular	
singular points, Bessel's and Legendre's equations and their solutions, partial	
differentiation, types of partial differential equations.	
Unit-IV	
Line integrals, double integrals, change of variables, polar coordinates, volume integrals, Laplacian operator, finite difference operators.	
Unit-V	15
Descriptive statistics, measures of central tendency, measures of dispersion, frequency and probability, permutations and combinations, binomial distribution, Gaussian distribution.	
References:	
 Steiner, E. The Chemistry Maths Book. 2ndedition, Oxford University Press, (Textbook). 	2008,
2. Gupta, S. C. and Kapoor, V.K. Fundamentals of Mathematical Statistics. S. Chand & Sons, 2014.	
3. Lipschutz, S. and Lipson, M. Linear Algebra. 3 rd edition, Tata McGraw-Hill,	,2005.
4. Raisinghania, M. D. Advanced Differential Equations. S. Chand & Company	7
Ltd. New Delhi, 2001.	

Course No:	Course Name: N	Numerical Me	ethods	Cou	Course Code: SBSMAT 03 02 03 GE 3104					
06										
Batch:	Program: UG	Sem: II	L	Т	P	Credits	Contact			
							Hrs per			
							Week: 06			
			5	1	0	6	Total			
							Hours: 90			
Course	The rapid grow	th of science	ce and techr	ology du	iring last	few decades	has made a			
Objective	tremendous chan	ge in the nat	ure of various	s mathema	atical prob	olems. It is ver	y difficult and			
	almost impossib	le to get ana	lytical soluti	ons in cas	se of mar	ny of these pro	blems. These			
	shortcomings of	analytical so	lutions lead u	s to vario	us numeri	cal techniques	developed for			
	different types of	of mathemati	ical problems	s seem to	be an e	xcellent optior	n. The course			
	objective is to acquaint the students with a wide range of numerical methods to solve									
	algebraic and tra	nscendental o	equations, lin	ear system	n of equat	ions, interpolat	ion and curve			
	fitting problems,	numerical in	tegration, init	ial and bo	undary va	llue problems, e	etc.			
Course	After go	oing through	this course th	ne student	ts will be	able to				
Outcomes	• Learn nu	merical techr	nique to find	the numer	rical solut	ions of system	of linear and			
	nonlinear	equations an	d some curve	fitting pr	oblems					
	• Find the l	Numerical so	lutions of No	n-linear eo	quations					
	• Familiari	ze the studen	ts with advan	tages and	limitation	s of numerical	techniques			
	• Solve inte	erpolation pro	blems, differer	nce equation	ons and Ei	gen value probl	ems			
	I	Conte	ent of Each U	nit			Hours			
Unit I Nature	e of numerical con	nputations: e	rrors and the	r propaga	tion		18			
linear system	nerical solution on ns, error analysis. nd Acceleration.					•	18			
Power metho	atrix Eigenvalue p od. Orthogonal tra tric Tridiagonal n tion.	nsformations	s using House	holder ma	atrices. Th	e eigenvalues	18			

Unit-IV: Numerical solutions of Non-linear equations: Solution of non-linear equations	18						
by iterative methods, acceleration of convergence. Newton's methods for polynomials,							
quotient-difference algorithms. Numerical solution of system of Non-linear equations.							
Unit-V:	18						
Interpolation: Interpolating polynomial and its construction using Lagrange methods and							
methods of differences, iterated interpolation, method of divided differences, inverse							
interpolation, Hermite Interpolation. The general Hermite interpolation problem. Spline							
function and their use.							
References:							
1. K. Atkinson: An Introduction to Numerical Analysis, 2nd edition, Wiley, 1989.							
2. R.L. Burden and J.D. Faires: Numerical analysis, 7th edition, Brooks Cole, 2001.							
3. P.J. Davis: Interpolation and Approximation, Dover, 1975.							
4. J.M. Ortega: Numerical Analysis: A Second Course, SIAM, 1987.							
5. S.S. Sastry: Introductory Methods of Numerical Analysis, Phi Learning, 2009.							

Lab Component: Exposure to MATLAB/Mathematica and computational experiments based on the algorithms discussed in the course.

Course No:	Course Name: Linear AlgebraCourse Code: SBSMAT 03 03									
07										
Batch:	Program: UG	Sem: III	L	Т	Р	Credits	Contact Hrs			
							per Week: 06			
			5	1	0	6	Total Hours: 90			
Course	The objective of	the course is	s to develop	the unders	standing	about some l	pasic concepts of			
Objective	Linear Algebra.									
Course	After ge	oing through	this course t	he studen	ts will be	e able to				
Outcomes	Describe	the concepts	s of the terms	s basis, di	mension,	, and apply t	hese concepts to			
	various vector spaces and subspaces									
	• Use the concept of linear transformations, matrix representation and change of									
	basis, including kernel, range									
	• Compute inner products and determine orthogonality on vector spaces, applying									
	Gram-Schmidt orthogonalization process to find the orthonormal basis.									
	 Understand the notion of algebraic, geometric multiplicities and diagonalization. 									
	• Onderstand the notion of argeoraic, geometric multiplicities and diagonalization.									
							Hours			
		Conte	ent of Each U	nit						
Unit I: Vect	ors in \mathbb{R}^n and \mathbb{C}^n	, notions of	linear depen	dence an	d indepe	ndence, line	ar 18			
span of a set			·		·					
Unit-II: Vect	tor Space and subs	spaces, basis	of a vector su	bspace.			18			
-	stems of linear ed	•				•				
-	olumn space, rar			nts and r	ank of a	matrix. line	ar			
	ons, matrix of a III		nation							
Unit_IV.	ner product in Eu	uclidoan ena	Co Gram Sch	midt ort	nogonali .	ation proces	s, 18			
	bases, projections	•			-		55, 10			
		, , , , , , , , , , , , , , , , , , , ,								

Unit-V: Eigenvalues and eigenvectors, characteristic polynomials, Cayley-Hamilton theorem, the eigenvalue of special matrices (orthogonal, unitary, symmetric, Hermitian, skew-symmetric, normal). Algebraic and geometric multiplicities, diagonalization by similarity transformations.

References:

- 1. G. Strang: Linear Algebra and its Applications, 4th edition, Thomson, 2006, (Textbook).
- 2. H. Anton and C. Rorres: Elementary Linear Algebra with Applications, 9th edition, Wiley, 2005.

18

- 3. P. D. Lax: Linear Algebra and Its Applications, 2nd edition, Wiley, 2007.
- 4. R. A. Horn and C.R. Johnson: Matrix Analysis, Cambridge University Press, 1990.
- 5. P. R. Halmos: Finite-dimensional Vector Spaces, Springer, 1974.
- 6. C.D. Meyer: Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- 7. S.L. Campbell and C.D. Meyer: Generalized Inverses of Linear Transformations, SIAM, 2008.
- 8. A. J. Laub: Matrix Analysis for Scientists and Engineers, SIAM, 2004.
- 9. V. Krishnamurthy, V.P Mainra and J.L Arora: An Introduction to Linear Algebra, East-West Press, New Delhi 2011.

Course	Course Name: Differential EquationsCourse Code: SBSMAT 03 03 02 GE 5106							E 5106
No: 08								
Batch:	Program: UG	Sem: III	L	Т	ct Hrs per			
							Week:	06
			5	1	0	6	Total H	lours: 90
Course	To introduce ordinary	y differentia	l equatio	ns, gener	al, partic	ular, expl	icit, imp	olicit and
Objective	singular solutions of	a different	tial equa	tion. This	course f	further exp	plains the	analytic
	techniques in computi	ng the soluti	ons of va	rious ordir	nary differ	rential equa	ations.	
Course	After going throu	19h this cou	rse the st	udents wi	ll be able	e to		
Outcomes	Understand the	-						
	• Learn various	U	•				st order di	fferential
	equations and I	-	0 0					
	Know Picard's		-		•		f solution	ns of first
	order different		-					
	series method	for higher or	rder linea	r equation	s, especia	lly in case	s when the	nere is no
	method availab	ole to solve s	uch equa	tions.	-	-		
	• Grasp the cor	cept of a g	general s	olution of	a linear	differenti	al equati	on of an
	arbitrary order	and also lea	arn a few	methods	to obtain	the genera	al solutio	n of such
	equations.							
	• Formulate mat	hematical n	nodels in	the form	of ordin	ary differe	ential equ	ations to
	suggest possib	le solutions	of the da	y to day p	oroblems a	arising in	physical,	chemical
	and biological	disciplines.						
		Conten	nt of Eacl	n Unit				Hours
Unit-I: Firs	st Order Differential E	quations						18
Basic conc	epts and genesis of	ordinary dif	fferential	equations	s, Order	and degre	ee of a	
differential	equation, Differential	equations	of first	order and	d first d	egree, dif	ferential	
Equations i	in which variables are	e separable,	Homoge	eneous dif	ferential	equations	, Linear	
differential	equations and equatio	ns reducible	e to linea	r form, E	exact diffe	erential eq	uations,	
Integrating	factor, First order high	ner degree d	lifferentia	al equation	ns solvab	le for x, y	and p.	
Clairaut's fe	orm and singular solution	ons. Picard's	s method	of success	sive appro	oximations	and the	

statement of Picard's theorem for the existence and uniqueness of the solutions of the first	
order differential equations.	
Unit-II: Second Order Linear Differential Equations	18
Statement of existence and uniqueness theorem for linear differential equations, General	
theory of linear differential equations of second order with variable coefficients, Solutions of	
homogeneous linear differential equations of second order with constant coefficients,	
Transformations of the equation by changing the dependent/independent variable, Method of	
variation of parameters and method of undetermined coefficients, Reduction of order, Coupled	
linear differential equations with constant coefficients.	
Unit-III: Higher Order Linear Differential Equations	18
Principle of superposition for a homogeneous linear differential equation, Linearly dependent	
and linearly independent solutions on an interval, Wronskian and its properties, Concept of a	
general solution of a linear differential equation, Linear homogeneous and non-homogeneous	
differential equations of higher order with constant coefficients, Euler-Cauchy equation,	
Method of variation of parameters and method of undetermined coefficients, Inverse operator	
method.	
Unit-IV: First Order Partial Differential Equations	18
Order and degree of Partial differential equations (PDE), Concept of linear and non-linear	
partial differential equations, Partial differential equations of the first order, Lagrange's	
method, Some special type of equation which can be solved easily by methods other than the	
general method, Charpit's general method.	
Unit-V: Second Order Partial Differential Equations with Constant Coefficients	18
Classification of linear partial differential equations of second order, Homogeneous and non-	
homogeneous equations with constant coefficients.	
References:	
1. Shepley L. Ross (2007). Differential Equations (3rd edition), Wiley India, (Textbool	

- Erwin Kreyszig (2011). Advanced Engineering Mathematics (10th edition). Wiley, (Textbook).
- E.A. Coddington and N. Levinson (2016). Theory of Ordinary Differential Equations (18th edition), Tata McGRAW-Hill.

- 4. George F. Simmons (2017). Differential Equations with Applications and Historical Notes (3rd edition). CRC Press. Taylor & Francis.
- B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in Ordinary Differential Equations (2nd edition). Narosa.

Course	Course Name: Complex AnalysisCourse Code: SBSMAT 03 03 03 GE 5106										
No: 09											
Batch:	Program: UG	Sem: III	L	Т	Р	Irs per					
						Week: 06					
			5	1	0	6	Total Ho	urs: 90			
Course	To providing the basic knowledge and to finds basic ideas of analysis for complex										
Objective	functions in com	functions in complex variables with visualization through relevant practical's. Particular									
	emphasis has bee	n laid on Ca	uchy's	theorem	ns and se	eries expansions.					
Course	After going	g through th	is cour	se the s	tudents	will be able to					
Outcomes		• Visualize complex numbers as points of \mathbb{R}^2 and stereographic projection of									
	 complex plane on the Riemann sphere. Understand the significance of differentiability and analyticity of complex functions leading to the Cauchy-Riemann equations. Learn the role of Cauchy-Goursat theorem and Cauchy integral formula in evaluation of contour integrals. Apply Liouville's theorem in fundamental theorem of algebra. 										
		nd the conv				n integration and	differentiati	on of a			
	I	Co	ontent o	of Each	Unit			Hours			
Unit-I: Com	plex Plane and fu	nctions.						18			
Complex nur	nbers and their rep	resentation,	algebra	a of cor	nplex nu	imbers; Complex pl	lane, Open				
set, Domain	and region in co	omplex plai	ne; Ste	reograp	hic proj	ection and Rieman	nn sphere;				
Complex fur	nctions and their	limits inclu	ding lir	nit at i	nfinity;	Continuity, Linear	fractional				
transformatio	ns and their geome	etrical prope	rties.								
Unit-II: Ana	lytic Functions ar	d Cauchy-	Riemar	ın Equ	ations			18			
Differentiabil	lity of a complex v	alued functi	on, Cau	ichy-Ri	emann eo	quations, Harmonic	functions,				
necessary an	d sufficient conditions for differentiability, Analytic functions; Analyticity and										
zeros of expo	onential, trigonome	etric and log	garithmi	c funct	ions; Bra	anch cut and branch	n of multi-				
valued function	ons.										

Unit-III: Cauchy's Theorems and Fundamental Theorem of Algebra	18
Line integral, Path independence, Complex integration, Green's theorem, Anti-derivative	
theorem, Cauchy-Goursat theorem, Cauchy integral formula, Cauchy's inequality, Derivative of	
analytic function, Liouville's theorem, Fundamental theorem of algebra, Maximum modulus	
theorem and its consequences.	
Unit-IV: Power Series	18
Sequences, series and their convergence, Taylor series and Laurent series of analytic functions,	
Power series, Radius of convergence, Integration and differentiation of power series, Absolute	
and uniform convergence of power series.	
Unit-V: Singularities and Contour Integration	18
Meromorphic functions, Zeros and poles of meromorphic functions, Nature of singularities,	
Picard's theorem, Residues, Cauchy's residue theorem, Argument principle, Rouche's theor- em,	
Jordan's lemma, Evaluation of proper and improper integrals.	
References:	
1. James Ward Brown & Ruel V. Churchill (2009). Complex Variables and Applications	
(9th edition). McGraw-Hill Education, (Textbook).	
2. John B. Conway (1973). Functions of One Complex Variable. Springer-Verlag, (Text)	book).
3. Lars V. Ahlfors (2017). Complex Analysis (3rd edition). McGraw-Hill Education.	
4. Joseph Bak & Donald J. Newman (2010). Complex Analysis (3rd edition). Springer.	
5. E.T. Copson (1970). Introduction to Theory of Functions of Complex Variable.	Oxford
University Press.	
6. Theodore W. Gamelin (2001). Complex Analysis. Springer-Verlag.	
7. George Polya & Gordon Latta (1974). Complex Variables. Wiley.	
8. H. A. Priestley (2003). Introduction to Complex Analysis. Oxford University Press.	
9. E. C. Titchmarsh (1976). Theory of Functions (2nd edition). Oxford University Press.	

Course No:	Course Name: In	ntroduction to	o Graph Th	eory Cour	rse Code: S	SBSMAT	03 04	01 GE 5106
10								
Batch:	Program: UGSem: IVLTPCreditsCo					Con	ntact Hrs per	
							Wee	ek: 06
			5	1	0	6	Tot	al Hours: 90
Course	The objective of	the course i	s to introdu	ice students	s with the	fundamen	tal co	oncepts graph
Objective	theory, with a set	ense of som	e its mode	ern applicat	ions. The	y will be	able	to use these
	methods in subs	equent cours	ses in the c	design and	analysis o	of algorith	ms, c	computability
	theory, software e	engineering,	and comput	ter systems.	-			
Course	After go	ing through	this course	the studen	ts will be	able to		
Outcomes	• Understar	nd the concept	ot of Graphs	5				
	• Use the co	oncept of plan	ar graphs, ti	ees and stud	dy for their	properties		
	Analyze	Matchings an	d coverings	s in Bipartite	e graphs			
								Hours
		Conte	ent of Each	Unit				nours
Unit I Grap	hs and Sub graph	s:- Graphs a	and simple	graphs, Gi	raph isom	orphism,	The	18
incidence and	d adjacency matric	es, sub grapl	hs, connect	ed and bipa	artite grap	hs, walk, t	rail,	
path and cyc Algorithm.	les. Application: -	The Shortes	st path pro	blem, Dijks	tra algorit	thm, Wars	hall	
Aigoritini.								
	es:- Trees, Cut Ec	-		· ·	-	and Cayle	ey's	18
formula. The	Connector Probler	n: Prim's Alg	orithm, Kru	iskal's Algor	rithm			
Unit-III: Eu	ler tour and Ha	milton's Cyc	les, charad	cterization	of Euleri	an graphs	s, a	18
	d some sufficient c			•	aph. Closu	re and deg	ree	
majorization	and related results	s, Chinese Po	stman Prob	olem				
Unit-IV: Ma	tchings: Theoren	n of Berge,	Matchings	and coverin	ngs in Bip	artite grap	ohs,	18
Application: H	Unit-IV: Matchings: Theorem of Berge, Matchings and coverings in Bipartite graphs, 18 Application: Hall's marriage theorem, Some Assignment Problems.							
Unit-V:								18
Application o	f Graphs.							10
	ent: Implementati	on in C: Dijk	stra Algorit	hm, Warsh	all Algorit	hm, BFS, [DFS,	
Prims Algorit	Prims Algorithm, Kruskal Algorithm, Connectivity Algorithm, Flurey Algorithm.							

References:

- 1. J.A. Bondy and U.S.R Murty: Graph Theory, Springer, 2008, (Textbook).
- 2. F. Harary: Graph Theory, Westview Press, 1994, (Textbook)..
- 3. R.J. Wilson: Introduction to Graph Theory, 4th edition, Pearson, 2002.
- 4. J. Clark and D. A. Holton: A First Look at Graph Theory, World Scientific, 1991.
- 5. D.B. West: Introduction to Graph Theory, 2nd edition, PHI Learning, 2009.
- 6. N. Deo: Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall of India, 2004

Course No:	Course Name: Optimization Techniques				Course Code: SBSMAT 03 04 02 GE 5106				
11									
Batch:	Program: UG	Sem: IV	L	Т	Р	Credits	Con	tact Hrs	
							per	Week: 06	
			5	1	0	6	Tota	al Hours: 90	
Course	This course is de	esigned to introd	duce basic	c optimiz	zation t	techniques in	orde	r to get best	
Objective	results from a	set of several	possible	solution	ns of c	lifferent pro	blems	viz. linear	
	programming pro	oblems, transpor	tation pro	blem, as	ssignme	ent problem	and u	nconstrained	
	and constrained p	oroblems etc.							
Course	After go	ing through this	course th	ne studer	nts will	be able to			
Outcomes	• Understar	nd linear progra	mming p	roblems	and to	find their s	olutio	ns by using	
	different 1	nethod.							
	• Use the si	mplex method to	o solve lin	ear prog	rammin	g			
	• Solve the	Dual of Linear F	Programin	g proble	m				
	Find optin	nal solution of tra	insportatio	n probler	ns and a	assignment pr	oblem	S	
	I							Hours of	
		Content o	of Each U	nit				Each Unit	
	luction to Operativex Sets and Conve	-	perations	research	n techn	iques, simula	ation	18	
	ear Programmin I operations rese solution.	-	-	•				18	
Unit-III: The	Simplex method:	Standard LP forr	n, basic so	olution, 1	The Sim	plex method	, the	18	
-	Unit-III: The Simplex method: Standard LP form, basic solution, The Simplex method, the 18 M-method, the two-phase method, degeneracy, alternative optimal solution, unbounded solution, infeasible solution, the dual Simplex method.								
	inition of the dual , economic interpr	•	-			•	and	18	

Unit-V:	18
Transportation, assignment and transhipment models: Definition of the transportation	
model, determination of a starting solution, the transportation algorithm, definition of the	
assignment problem, the Hungarian method.	
References:	
1. H. A. Taha: Operations Research: An introduction, 8 th edition, Pearson, 2008, (Tex	tbook).
2. E Hillior and G. Lighermann: Introduction to Operations Research 8 th adition N	AcGrow Hill

- 2. F. Hillier and G. Liebermann: Introduction to Operations Research, 8th edition, McGraw Hill, 2005, (**Textbook**).
- 3. W. L. Winston: Operations Research: Applications and Algorithms, 4th edition, Cengage, 2004.
- 4. S. D. Sharma: Operations Research: Theory and Applications, 4th edition, Macmillan, 2010.
- 5. J. K. Sharma: Operations Research: Theory and Applications, 4th edition, Macmillan, 2009.

Course No:	Course Name: Mathematical ModelingCourse Code: SBSMAT 03 04 02 GE 5106						
12							
Batch:	Program: UG	Sem: IV	L	T	Р	Credits	Contact Hrs per Week: 06
			5	1	0	6	Total Hours: 90
Course	The objectives of	this course a	are to:				
Objective	 Enable students understand how mathematical models are formulated, solved and interpreted. Make students appreciate the power and limitations of mathematics in solving practical real-life problems. 						
	• Equip students with the basic mathematical modelling skills						
Course	After going through this course the students will be able to						
Outcomes	 Enable students understand how mathematical models are formulated, solved and interpreted. Make students appreciate the power and limitations of mathematics in solving practical real-life problems Understand the concept of Empirical Modeling with Data Fitting Solve Mathematical models through Partial Differential equations 						
							Hours of
	Content of Each Unit				Each Unit		
	uction to modeling		-	, Types of	models,	Characteris	tics 18
matrices, eig	deling with Diffe envalues and eigno population grow	envectors; fi			-		-
system of o	thematical Models rdinary first orde urve and Persuit, B nd Finance.	er differentia	l equations.	Motion of	of satelli	tes, Electri	ical

Unit-IV: Empirical Modeling with Data Fitting: error function, least squares method; fitting data with polynomials and splines. Types of Simulation, Simple Case Studies, Simulation methodology, Simulation Software, Criteria for valid and Creditable Simulation Models.	18	
Unit-V:	18	
Mathematical models through Partial Differential equations: Equation of Continuity in fluid flow, Heat flow and Traffic flow. Diffusion models in air pollution, Water pollution, simple models based on heat transfer, mass transfer and wave propagation.		

References:

- 1. J.N. Kapoor: Mathematical Modelling, Wiley Eastern Ltd, 1982, (Textbook).
- 2. R. Haberman: Mathematical Models: Mechanical Vibrations, Population Dynamics, and Traffic Flow, SIAM, 1998, (Textbook).
- 3. M. Braun: Differential Equations and their Application: An Introduction to Applied Mathematics, 3rd edition, Springer, 1991.
- 4. A.M. Law: Simulation Modelling and Analysis, 4th edition, McGraw Hill, 2006.
- 5. R. M. Davies and R. M. O'Keefe: Simulation Modelling with Pascal, Prentice Hall 1989.
- 6. F. R. Giordano, W.P. Fox and S. B. Horton: A First Course in Mathematical Modelling, 5th edition, Cengage Learning, 2013.

11. Teaching-Learning Process

- Lectures
- Discussions
- Simulations
- Role Plays
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-enabled Learning

12. Implementation of Blended Learning

Blended Learning is a pedagogical approach that combines face-to-face classroom methods with computer-based activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICTenabled strategies. It emphasizes student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimizes and compliments face-to-face learning, giving ample freedom and flexibility to the students and teachers to access and explore wide range of open-access resources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face-to-face learning. The blended learning does not undermine the role of a teacher; rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;
- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each Program, be adopted

13. Assessment and Evaluation

- Continuous Comprehensive Evaluation at regular intervals after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the program instead of one-time assessment
- Oral Examinations to test presentation and communication skills

- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

14. Keywords

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Program Outcomes
- Program Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation
- Multiple Entry
- Multiple Exit

15. References

- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website, <u>https://www.ugc.ac.in/pdfnews/6100340_Concept-Note-Blended-Mode-of-</u> <u>Teaching-and-Learning.pdf</u>
- Guidelines for Multiple Entry and Exit in Academic Programs offered in Higher Education
 Institutions,

https://www.education.gov.in/sites/upload_files/mhrd/files/upload_document/abc_doc.p df

- National Education Policy-2020, <u>https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf</u>
- Quality Mandate for Higher Education in India, <u>https://www.ugc.ac.in/e-book/Quality%20Mandate%20E-BOOK/mobile/index.html</u>

 The draft subject specific LOCF templates available on UGC website, <u>https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ</u>==

16. Appendix

(i) Courses of 5-year integrated BSc-MSc Mathematics having similarity more than 50% with corresponding MOOC courses have been identified, perused and discussed. These are recommended to be included for offering as equivalent courses:

List of Courses in Integrated BSc-MSc, and MSc Mathematics programs:

Sr.	CUH Program/Semester	CUH Course Title/Type(credits)	MOOC Course	Similarity	
1	BSc-MSc (Integ.)/ 1 ST	Calculus /Core (6)	Calculus of One Real Variable	75-80%	
2	BSc-MSc (Integ.)/ 2 ND	Multivariate Calculus /Core (6)	Calculus of Several Real Variables	75-80%	
3	BSc-MSc (Integ.)/ 2 ND	Ordinary Differential Equations/Core (6)	Differential Equations	70%	
4	BSc-MSc (Integ.)/ 3 RD	Group Theory /Core (6)	Introduction to Abstract Group Theory	85%	
5	BSc-MSc (Integ.)/ 3 RD	Probability Theory and Statistics /Core (6)	Introduction to Probability Theory and Statistics	80%	
6	BSc-MSc (Integ.)/ 3 RD	Real Analysis/Core (6)	Real Analysis	90%	
7	BSc-MSc (Integ.)/ 4^{TH} , 5^{TH}	Advanced Algebra /Core (6) Linear Algebra /Core (6)	Introduction to Abstract and Linear Algebra	60% 50%	
8	BSc-MSc (Integ.)/ 4 TH	Partial Differential Equations and Calculus of Variation /Core (6)	Partial Differential Equations	65%	
9	BSc-MSc (Integ.)/ 5 TH , MSc 1 ST	Linear Algebra /Core (6, 4)	Linear Algebra	75-80%	
10	BSc-M.Sc (Integ.)/ 6 TH	Numerical Methods /Core (6)	Numerical Methods	75-80%	
11	BSc-MSc (Integ.)/ 6 TH MSc/1 ST	Complex Analysis/Core (6, 4)	Complex Analysis	80%	
12	$\frac{\text{MSc}}{1^{\text{ST}}}, 4^{\text{TH}}$	Algebra-I /Core (4) Algebra-II /Core (4)	Rings and Modules	50% 50%	
13	MSc /3 RD	Operations Research /DSEC (4)	Operations Research	90%	
14	MSc /4 TH	Measure Theory and Integration /DSEC (4)	Measure Theory	90%	

MOOC courses (SWAYAM) having similarity more than 75% with the core courses may be offered to the students. For SEC/GEC/AECC/DCEC/DSEC courses, the students may opt from the MOOC courses provided these courses are not in the list of core courses and student have not studied similar courses earlier. Since, the list of MOOC courses (SWAYAM) keeps changing, the departmental committee is authorized to finalize the list of MOOC courses for each semester based on the above criteria.

		Distribution of Marks
		(Max. Marks=100)
Continuous		Max. Marks=30
Assessment	Sessional-I	10
	Sessional-II	10
	Quiz/Assignment	5
	Attendance	5
End Term		Max. Marks=70
Examination		(i) Question 1 has seven sub-parts (short
(3 Hours)		answer-type) at least one from each unit and students need to answer any five. Each sub-part carries 2 Marks. (5x2=10)
		 (ii) Question 2 to 6 (one from each unit) have three sub-parts each, and students need to answer any two. Each sub-part carries 6 marks. (2x6x5=60 marks).

(ii) Structure of Question Papers and Marks Distribution